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Abstract

Calcineurin—nuclear factor of activated T cells (CN-NFAT) inhibitors are widely clinically used drugs for immunosuppression, but besides
their required T cell response inhibition, they also undesirably affect innate immune cells. Disruption of innate immune cell function can
explain the observed susceptibility of CN-NFAT inhibitor-treated patients to opportunistic fungal infections. Neutrophils play an
essential role in innate immunity as a defense against pathogens; however, the effect of CN-NFAT inhibitors on neutrophil function
was poorly described. Thus, we tested the response of human neutrophils to opportunistic fungal pathogens, namely Candida albicans
and Aspergillus fumigatus, in the presence of CN-NFAT inhibitors. Here, we report that the NFAT pathway members were expressed in
neutrophils and mediated part of the neutrophil response to pathogens. Upon pathogen exposure, neutrophils underwent profound
transcriptomic changes with subsequent production of effector molecules. Importantly, genes and proteins involved in the regulation
of the immune response and chemotaxis, including the chemokines CCL2, CCL3, and CCL4 were significantly upregulated. The
presence of CN-NFAT inhibitors attenuated the expression of these chemokines and impaired the ability of neutrophils to

chemoattract other immune cells. Our results amend knowledge about the impact of CN-NFAT inhibition in human neutrophils.
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1. Introduction

Neutrophils play an essential role as cells of the first response tar-
geting pathogens at the site of infection. Furthermore, they also
govern the subsequent immune response through the production
of several proinflammatory cytokines and chemokines attracting
other immune cells.™? In particular, neutrophils recognize patho-
gens through pattern recognition receptors (PRRs) linked to the ac-
tivation of inflammatory pathways and downstream signaling.’
Activation via the PRRs drives neutrophil defensive responses
such as degranulation, release of neutrophil extracellular traps
(NETs), chemotaxis, or production of reactive oxygen species, cy-
tokines, and chemokines.>*

The pathogen recognition through PRRs induces the activation
of multiple signaling pathways including calcineurin—nuclear fac-
tor of activated T cell (CN-NFAT) signaling. We and others®> ' have
shown that NFAT controls several essential functions of myeloid
cells resulting in higher susceptibility to pathogens.'"? The initial
finding of the role of NFAT in myeloid cells has been reported in
macrophages and dendritic cells using mice models of fungal in-
fections, specifically of Candida albicans*® or Aspergillus fumigatus®
infection. Importantly, we have reported that NFAT signaling in
human monocytes coregulates the expression of important anti-
fungal mediator pentraxin-3 (PTX-3).'* Moreover, the secretion
of cytokines and chemokines such as tumor necrosis factor a,
interleukin-10, and CCL2 (MCP-1) was inhibited by CN-NFAT in-
hibitor cyclosporine A (CsA) upon zymosan stimulation.**

Vega et al.’® reported the expression of NFAT family members
in human neutrophils and showed that CN-NFAT signaling gov-
erns neutrophil expression of cyclooxygenase-2 (COX-2)."> The 2
most commonly used CN-NFAT inhibitors, CsA and tacrolimus
(FK506), inhibited the degranulation of polymorphonuclear leuko-
cytes (PMNs).*® Similarly, inhibition of oxidative burst assessed as
production of superoxide has been reported.’” Sasakawa et al.*®
showed the influence of CN-NFAT inhibitors on peripheral blood
mononuclear cell-driven neutrophil chemotaxis.*® Others have
already connected CN-NFAT signaling in neutrophils with their
infiltration to the lung during bacterial infection in mice,"® con-
cluding that CN-NFAT inhibition controls the expression of
CXC-type chemokines, thus aggravating the lung injury upon
streptococcal infection®® and with susceptibility to fungal infec-
tions in mice.>®

Our previous data showed the significant role of CN-NFAT sig-
naling in the susceptibility of mice to fungal infection in the con-
ditional knockout of CN in dendritic cells as well as in
neutrophils.’” These findings were further corroborated in human
primary monocytes, showing the decrease in PTX-3 and cytokines
and chemokines expression in CN-NFAT inhibitor-treated mono-
cytes upon fungal ligands stimulation.™

Impairment of the NFAT signaling in innate immune cells has
been associated with many pathologies and immune functions.
Macrophages from mice lacking NFATC3 (NFAT4) expression
demonstrated impaired phagocytosis and were determined as
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an important factor for higher susceptibility to polymicrobial in-
fection assay in lungs after the cecal ligation puncture model of
sepsis.?® We recently reported profound changes in neutrophil ex-
pression and protein levels during sepsis progression.”* Recently,
a new role of CN-NFAT signaling during sepsis progression has
been shown in bacterial sepsis, in which impaired NFAT in plate-
lets promoted disease severity through increased NETs and disse-
minated coagulation.”? Here, we address the specific role of
CN-NFAT in human peripheral blood-isolated neutrophils, espe-
cially in the context of susceptibility to fungal infection.
Furthermore, we investigate the NFAT-dependent gene expres-
sion from PMNs of patients hospitalized at the intensive care
unit (ICU) with sepsis.

2. Methods

2.1 Isolation of peripheral blood human
neutrophils

Neutrophils were isolated from healthy donor buffy coats
(Department of Transfusion & Tissue Medicine, Brno University
Hospital, Brno, Czech Republic) by a 2-step protocol. Undiluted
buffy coats were layered onto PolymorphPrep (density 1.113
g/mL; Axis-shield) and centrifuged following the manufacturer’s
recommendations. The obtained PMN layer was purified using
EasySep Direct Human Neutrophil Isolation Kit (STEMCELL
Technologies) and “The Big Easy” EasySep Magnet (STEMCELL
Technologies) according to the manufacturer’s protocol. Isolated
neutrophils were centrifuged and resuspended in X-VIVO 15 me-
dia (Lonza) without any supplementation. Neutrophils with at
least 95% purity were used.

2.2 Fluorescence-activated cell sorting
neutrophil purity assessment

The purity of isolated neutrophils was assessed using flow cytom-
etry (fluorescence-activated cell sorting [FACS]). Isolated neutro-
phils (1x10° cells per sample) were stained with 2 different
antibody cocktails, C1 and C2 (Table 1), in phosphate-buffered sa-
line (PBS)+1mM EDTA for 30 min on ice. LIVE/DEAD Fixable
Green Dead Cell Stain Kit (Life Technologies) in C1 was used to
monitor cell viability. After 30 min of staining followed by the
washing step, cells were fixed using IC fixation buffer (Life
Technologies). Cell populations were analyzed using the
FACSCanto II cytometer (BD Biosciences), and the data were ana-
lyzed using FlowJo v.10.8 (BD Life Sciences). Neutrophils were

Table 1. Antibodies used for assessment of purity of isolated
neutrophils.

Antibody Fluorochrome Cat. no. Manufacturer Dilution
C1
CD14 PE 367104 BioLegend 1:100
CD16 eF450 48-0168-42 eBioscience 1:100
CD66b PE/Cy7 25-0666-42 eBioscience 1:25
LiveDead FITC L23101 Life Technologies 1:1000
Green
CD107a APC 2243100 SONY 1:100
CD63 BV510 2365160 SONY 1:100
C2
CD66b PE/DzI594 2125610 SONY 1:100
CD16 eF450 48-0168-42 eBioscience 1:100
CD3 APC/Cy7 317342 BioLegend 1:50
CD11b PE/Cy7 25-0118-42 eBioscience 1:100
CD193 APC 17-1939-42 eBioscience 1:100
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considered CD66b", CD16%, and CD11b* cells, and the contamin-
ation of CD193* cells and CD3* cells was monitored. The represen-
tative gating strategy is shown in Fig. 1B.

2.3 Monocyte isolation

Monocytes were isolated from healthy donor buffy coats
(Department of Transfusion & Tissue Medicine of the Brno
University Hospital, Brno, Czech Republic) using RossetteSep
Human Monocytes Enrichment Cocktail (STEMCELL Technologies)
followed by layering of buffy coat diluted 1:1 with PBS onto
LymphoPrep (density 1.077 g/mL; STEMCELL Technologies) density
gradient medium and subsequent centrifugation according manu-
facturer’s recommendations. An obtained layer of monocytes was
washed 3 times with PBS and resuspended in X-VIVO 15 media
(Lonza) without any supplementation.

2.4 A. fumigatus culture

A. fumigatus Af293 was cultivated on potato dextrose agar
(Sigma-Aldrich) at 37 °Cfor 5 to 7 d. A. fumigatus conidia were har-
vested directly from agar using PBS and Tween 20 (0.05%). To ob-
tain A. fumigatus swollen conidia, harvested conidia were
cultivated in Sabouraud dextrose broth (Sigma-Aldrich) overnight
atroom temperature in flasks. To obtain A. fumigatus hyphae, har-
vested conidia were cultivated in Sabouraud dextrose liquid me-
dium overnight at 37 °C in flasks.

2.5 Candida albicans culture

C. albicans was cultivated on Sabouraud dextrose agar
(Sigma-Aldrich) at 37 °C overnight. C. albicans yeasts were har-
vested with PBS and seeded into RPMI (Life Technologies) and cul-
tivated in culture flasks at 37 °C in the atmosphere with 5% CO, for
30 min to obtain germ tubes or for 950 min to obtain hyphae.

2.6 Neutrophil stimulation

Freshly isolated neutrophils were maintained in X-VIVO 15 media
in concentration 2x10° cells/mL, unless otherwise stated.
Neutrophils were incubated for 30 min and then pretreated with
either 2 pg/mL CsA (Cell Signaling Technology), 0r0,4 pg/mL
FK506 (Invivogen), for 1h before exposure to 10° particles/mlL
heat-killed C. albicans (HKCA) (Invivogen) or 2 x 10° particles/mL
heat-killed A. fumigatus (HKAF) (obtained by heat inactivation of
cultured A. fumigatus) for 2 h. After incubation, samples were cen-
trifuged, a conditioned medium was used for enzyme-linked im-
munosorbent assay (ELISA) analysis, and pellets were lysed by
TRI REAGENT (Molecular Research Center) and frozen at —80 °C
until RNA isolation.

2.7 Differentiation and stimulation of
neutrophil-like cells

The HL-60 cell line obtained from the European Collection of Cell
Culture (ECACC Cerdic) was used to differentiate neutrophil-like
cells. The cell line was cultured in Iscove’s Modified Dulbecco’s
Medium (Life Technologies) with 10% (v/v) heat-inactivated fetal bo-
vine serum (Biowest), L-glutamine (Biowest), and penicillin/strepto-
mycin (Biowest) at 37 °C, 5% CO,. For differentiation into
neutrophil-like cells, HL-60 cells were centrifugated and resus-
pended in Iscove’s Modified Dulbecco’s Medium with 1.25% (v/v) di-
methyl sulfoxide, 10% (v/v) fetal bovine serum, L-glutamine, and
penicillin/streptomycin and seeded at concentration 1 x 10°. Cells
were cultivated for 7 d to obtain differentiated cells and were har-
vested, and 10° cells were seeded into each well of a 12-well plate
and cultivated overnight. Neutrophil-like cells were pretreated
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Fig. 1. Characterization of neutrophils (NEU) used in the following experiments. (A) Neutrophils’ expression of the CN-NFAT pathway analyzed by
gPCR and the expression pattern using RNAseq data obtained from nonstimulated NEU isolated from healthy donors. Columns show the mean of
normalized counts with SD or mean ACt values, calculated as a relative expression to GAPDH. (B) Representative dot plots showing the gating strategy
for assessing the purity of isolated NEU and comparison with blood from the buffy coat (BC) used for isolation. (C) Averaged purity of NEU after isolation
and comparison with blood from the BC. FSC-A = forward scatter area; SSC-A = side scatter area.

with 2 pg/mL CsA (Cell Signaling Technology) or 1uM TPCA-1
(Sigma-Aldrich) for 1h and stimulated by different life forms of
C. albicans or A. fumigatus in concentration 2.5 x 10° particles/mL,
or 2.5 x 10° particles/mlL HKAF, or 50 x 10° particles/mL HKCA.

2.8 Enzyme-linked immunosorbent assay

Conditioned medium from neutrophil or neutrophil-like cells cul-
tivation removed as supernatant after centrifugation was used for
cytokine and protein levels determination by ELISA. Levels of
PTX-3, CCL2/MCP-1, CCL3/MIP-1a, and CCL4/MIP-1B were meas-
ured in conditioned media (100 uL) using the DuoSet ELISA (R&D
Systems). ELISA was performed according to the manufacturer’s
recommendation.

2.9 RNA isolation and quantitative polymerase
chain reaction analysis of gene expression

Lysates from 2 to 6 x 10° neutrophils in 1 ml TRI REAGENT were
used for the isolation of total RNA. After the addition of 20% W/
W chloroform and centrifugation (12,000 g; 15 min; 4 °C), the
upper aqueous phase was collected and mixed with an equal vol-
ume of 70% ethanol. This mixture was used for RNA isolation us-
ing an RNAeasy mini kit (QIAGEN) or Arcturus Pico pure kit (Life

Technologies) according to the manufacturer’'s instructions.
DNA contamination was prevented by 15min of DNAse I
(QIAGEN) on column digestion. RNA concentrations were deter-
mined by Nanodrop (Agilent). RNA integrity was assessed on
Bioanalyzer 2100 RNA Nano 6000 chips (Agilent), and samples
with acceptable RIN were used for RNA sequencing.

For quantitative polymerase chain reaction (QPCR) analysis, sam-
ples were diluted to the same RNA concentration and transcribed
into complementary DNA using the High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific). Gene expression was
defined by using TagMan probes (TagMan Gene Expression Assay;
Thermo Fisher Scientific) and determined by real-time PCR analysis
performed on LightCycler 480 (Roche). The Ct values of genes of
interest were normalized to housekeeping gene GAPDH (ACt), and
the relative expression of each gene of interest was calculated as
272Ct Used TaqMan probes are listed in Supplementary 1.

2.10 Library preparation and sequencing

Ilumina sequencing libraries were prepared using the Lexogen
QuantSeq FWD following the manufacturer’s instructions.
Sequences were barcoded using UMI Second Strand Synthesis
Module for QuantSeq FWD and i5 6 nt Unique Dual Indexing
Add-on Kit (Lexogen) added unique index adapter sequences

920z Asenuer ¢ uo Jasn dn 47 O1 Ad 2009592/91.8/7/91 L/3191LE/01q¥ N8| f/Wod dno-dlwepeoe)/:sdyy woly papeojumod


http://academic.oup.com/jleukbio/article-lookup/doi/10.1093/jleuko/qiae091#supplementary-data

during the PCR step. QuantiFluor dsDNA System (Promega) was
used for quantification followed by equimolar pooling. The sam-
ple pool was sequenced using a NextSeq 500 sequencer
(llumina) using a 75-cycle high-output cartridge, at a sequencing
depth of ~13 M reads.

2.11 RNA sequencing bioinformatic analysis
Raw FASTQ files were preprocessed in an Arch Linux x 86_64 ser-
ver, suitable for multithreading. All reads were subjected to qual-
ity control (FastQC) and mapped to the human genome (Ensembl
GRCh38-p10). Differential expression (DE) analysis and all down-
stream processes were done in the R (v4.3.3; R Foundation for
Statistical computing) environment by use of R/Bioconductor
packages. DE analysis was done by use of the DESeq2 pipeline
and was followed by Gene Ontology (GO) and gene set enrichment
analysis, using the R package clusterProfiler and the desktop ver-
sion of gene set enrichment analysis MSigDB, respectively. Results
were visualized with the R packages ggplot2, complexHeatmap,
ggrepel, fmsb, and ggVENNdiagram. Genes that demonstrated a
log? fold change > 0.6| and a P value <0.05 were considered as sig-
nificantly differentially expressed genes (DEGs). The barplots were
visualized with Prism version 8 (GraphPad Software). The com-
plete RNA sequencing (RNAseq) data are publicly available in
Gene Expression Omnibus with accession number GSE259282.

2.12 Chemoattraction ability assay

The ability of neutrophils to chemoattract monocytes in different
conditions was assessed using transwell inserts with 5 pm pores
(cellQUART). After isolation, 1x10° neutrophils were seeded
into a 24-well plate, pretreated with CsA for 1h, and stimulated
by HKCA for 2 h. Culture plates were centrifuged (300 g, 5 min,
room temperature) supernatants were trashed and fresh medium
was added to cells. After that, inserts with 1x10° monocytes
stained using a Far-red cell proliferation kit (Life Technologies)
were placed into wells and cocultivated for 2 h. Then inserts were
trashed and plates were centrifugated again and used for imaging
using a confocal microscope Zeiss LSM 780 or for flow cytometry
analysis (FACS) analysis. For FACS analysis, pelleted cells were re-
suspended in PBS+ 1 mM EDTA, harvested into 5 mL falcon tubes,
washed, and stained. Cells were stained with the antibody cocktail
listed in Table 2 in PBS+1 mM EDTA for 30 min on ice. Unstained
control was fixed using IC fixation buffer (Life Technologies) imme-
diately. After 30 min of staining followed by the washing step, cells
were fixed using IC fixation buffer. Cell populations were recorded
using FACS Canto II cytometer (BD Biosciences) and analyzed using
FlowJo v.10.8 (BD Life Sciences). CD45", CD14", and Far-red-positive
cells were considered chemoattracted monocytes.

2.13 Statistical analysis

Statistical analysis was done using Prism software version 8. Data
were tested for normal distribution and based on its results appro-
priate parametric or nonparametric statistical tests were applied.
Used statistical tests are specified in the figure legends.

Table 2. Antibody cocktail for analysis of chemoattracted
monocytes.

Antibody  Fluorochrome Cat. no. Manufacturer  Dilution
CD14 PE 367104 BioLegend 1:100
CD16 eF450 48-0168-42 eBioscience 1:100
CD66b PE/Cy7 25-0666-42 eBioscience 1:25
CD45 BV510 304035 BioLegend 1:100
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3. Results

3.1 Human neutrophils express genes necessary
for CN-NFAT signaling with predominant
expression of NFATC3 and NFATC1

In order to explore the importance of the CN-NFAT signaling path-
way in neutrophils, we performed gene expression analysis using
bulk RNAseq and qPCR from neutrophils enriched from peripheral
blood-isolated PMNs of healthy donors. Our results showed that
neutrophils express molecules crucial for CN-NFAT signaling
(Fig. 1A). Specifically, from the calcium-dependent NFATS,
NFATC3 (NFAT4) was predominantly expressed, followed by
NFATC1 (NFAT2) (Fig. 1A). Among the calcium-sensing protein
CN subunits, PPP3CA, PPP3CB, and PPP3R1 were detected together
with the signal transducers SYK, PLCG2, and MYD88 (Fig. 1A). To
ensure the maximal reliability of results, all analyses were per-
formed with purified neutrophils. Neutrophils were gated as
CD11b*, CD16", and CD66b" cell population (Fig. 1B), and the aver-
age purity of the isolated cells was 97% (Fig. 1C).

3.2 NFAT signaling in human neutrophils
controls the expression of chemokines

To understand the pathogen-related expression changes in hu-
man neutrophils, we stimulated the cells with HKCA and HKAF
and subjected them to bulk RNAseq. Differential gene expression
analysis revealed transcriptional changes of neutrophils upon 2 h
of stimulation with HKCA or HKAF (Fig. 2A). Volcano plots depict
an overall pattern of expressional changes shown as DEGs (Fig. 24,
B). We observed that stimulation with both pathogens caused
prominent transcriptomic changes, marked by mostly an upregu-
lation of gene expression, which was stronger in response to HKCA
(Fig. 2A). CsA treatment prior to pathogen stimulation markedly
attenuated the observed transcriptomic changes and caused a
prominent downregulation of gene expression (Fig. 2B). GO ana-
lysis of the significant DEGs revealed that several biological proc-
esses that were significantly affected by CsA (Fig. 2C, D).
Noticeably, ontologies involved in neutrophil homeostasis and
chemotaxis (cell chemotaxis, cellular response to chemokine,
cytokine-mediated signaling pathway, leukocyte chemotaxis,
leukocyte migration, neutrophil chemotaxis, neutrophil migra-
tion, response to chemokine, and response to tumor necrosis fac-
tor) were significantly downregulated in both HKCA + CsA and
HKAF + CsA conditions. Given the common features of the tran-
scriptomic changes caused by stimulation with HKCA or HKAF,
we then sought to determine the genes that were commonly upre-
gulated by both pathogens and downregulated in the presence of
CsA (Fig. 2E). We identified 61 transcripts that were uniformly up-
regulated by both pathogens and at the same time downregulated
in the presence of CsA (Fig. 2E, F). Given the role of CsA as a
CN-NFAT inhibitor, these genes were considered as NFAT depend-
ent. Clustering of the analyzed samples based on the normalized
counts of these NFAT-dependent genes demonstrated that the
pathogen-stimulated samples (HKCA and HKAF) shared several
similarities between themselves and clustered together. At the
same time, the CsA-pretreated samples (HKCA + CsA and HKAF
+ CsA) clustered closer together and with the nontreated samples
(Fig. 2F). This finding supported the notion that the pathogen
stimulation upregulated CN-NFAT signaling, while CsA attenu-
ated it, returning it close to the nontreated conditions. In the
next step of our analysis, we sought to assign biological function
to the 60 DEGs, via GO analysis (Fig. 2G). We observed that the
60 NFAT-dependent genes participated mainly in ontologies in-
volved in cell mobility and chemotaxis. Importantly, the
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chemotactic chemokines CCL3 and CCL4 as well as the
colony-stimulating factor 1 (CSF1) were present in all ontologies
(Fig. 2G), suggesting a vital role for NFAT-dependent molecules
in neutrophil migration, chemotaxis, and homeostasis. Finally,
we sought to assess more in depth the extent of the pathogen
stimulation together with the CsA effect on the expression
changes of these genes (Fig. 2H). We observed a massive upregu-
lation of all 3 of CCL3, CCL4, and CSF1 after stimulation with
HKCA and a more modest one after stimulation with HKAF. In
both cases, pretreatment with CsA attenuated the upregulation
of all 3 genes (Fig. 2H).

3.3 Neutrophil chemokine release induced by
A. fumigatus and C. albicans was inhibited by CsA

RNAseq data revealed a potential connection between CN-NFAT
signaling and neutrophil chemotaxis while at the same time indi-
cating CCL3 and CCL4 as potentially important players in these
processes. Therefore, we analyzed the levels of chemokines re-
leased in response to pathogens and the potential effect of
CN-NFAT inhibition by CsA. As a control, we used a TPCA-1 inhibi-
tor in order to see the effect of nuclear factor kB inhibition on che-
mokine release. For this purpose, the HL-60 cell line differentiated
into neutrophil-like cells was used. The cells were stimulated by
different morphotypes of A. fumigatus and C. albicans. The release
of chemokines CCL2, CCL3, and CCL4 induced by yeasts, germ
tubes, and hyphae of C. albicans (Fig. 3A) and by conidia, swollen
conidia, and hyphae of A. fumigatus (Fig. 3B) was measured using
ELISA. The release of chemokines was dependent on morpho-
types. Hyphae of both pathogens were the most activatory, indu-
cing a significant increase in CCL3 and CCL4 production (Fig. 3A,
B). Further, we evaluated the effect of CsA and TPCA-1 on the se-
cretion of chemokines CCL2, CCL3, and CCL4 in response to differ-
ent C. albicans and A. fumigatus morphotypes (Fig. 3C-E).
Stimulation of neutrophil-like cells by yeast form and germ tube
form of C. albicans resulted in reduced CCL2 secretion induced
by TPCA-1, but the response to C. albicans hyphae was significantly
inhibited only by CsA (Fig. 3C). On the other hand, the release of
CCL3 and CCL4 was significantly inhibited only by CsA after ex-
posure to the hyphae form of both opportunistic pathogens and
the yeast form of C. albicans (Fig. 3D, E). Moreover, we observed a
CsA inhibitory effect on CCL4 secretion after exposure to HKCA
(Fig. 3E). Response to A. fumigatus conidia or swollen conidia was
not significantly affected by CsA (data not shown). Expressional
data obtained by qPCR (Fig. 3F-H) are consistent with observation
at the protein level. CCL2 expression was significantly increased in
response to A. fumigatus hyphae and HKCA, while response to
C. albicans hyphae was inhibited by CsA and TPCA-1 (Fig. 3F).
Expression of CCL3 was induced by A. fumigatus and C. albicans hy-
phae and also by HKCA, both inhibitors significantly affected re-
sponse to A. fumigatus hyphae and HKCA, in which the CsA
inhibitory effect showed strong significance (Fig. 3G). CCL4 expres-
sion was strongly elevated in response to A. fumigatus and C. albi-
cans hyphae, HKCA and TPCA-1 inhibited expression in response
to all 3 stimuli, and CsA inhibited response to C. albicans hyphae
and strongly also in response to HKCA (Fig. 3H).

3.4 CsA impaired the ability of neutrophils
to chemoattract monocytes

The chemotactic assay was used to determine the effect of CsA on
the ability of neutrophils to chemoattract other immune cells.
Staining of neutrophils and monocytes using 2 different
CellTrace dyes enabled us to distinguish monocytes that migrated
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through 5 um pore inserts (Fig. 4A). Fluorescence microscopy im-
ages taken after 2 h of chemotactic experiment show a proportion
of chemoattracted monocytes visualized in green within neutro-
phils visualized in red (Fig. 4A). To quantify the numbers of
chemoattracted monocytes, we stained a mixture of chemoat-
tracting neutrophils and migrated monocytes using antibodies
for surface markers (Table 2) and analyzed them by flow cytome-
try. The representative gating strategy of monocytes can be found
in Supplementary 2. The chemoattracted monocytes were defined
as Far-red CellTrace* and CD14" cell population and were used to
count relative chemoattraction (Fig. 4B). The ability of neutrophils
stimulated by HKCA to chemoattract monocytes was significantly
inhibited when neutrophils were treated with CsA prior to stimu-
lation (Fig. 4B, C).

3.5 Expression of molecules controlling immune
response was impaired by CN-NFAT inhibitors

As we identified NFAT-dependent expression of molecules con-
trolling immune response by RNAseq using CsA as an NFAT in-
hibitor, we used gPCR to confirm the same effect of another
NFAT inhibitor FK506 on the expression of selected genes by
primary human neutrophils. We focused especially on genes,
that were already reported as NFAT dependent. CCL2 expres-
sion was significantly increased by HKCA and HKAF after 2h
of stimulation, and its expression was completely prevented
by both CN-NFAT inhibitors (Fig. 5A). The expression of PTX3
was increased in response to heat-killed pathogens, but only
FK506 caused significant inhibition of its expression in response
to HKCA (Fig. 5B). However, in other conditions, the inhibitory
effect was not consistent, although NFAT-dependent expression
of PTX3 was reported in human monocytes.* The same trend
was observed when measuring PTX-3 levels in the medium of
cultivated neutrophils using the ELISA method (Fig. 5C). HKCA
stimulation caused a significant release of PTX-3; however, nei-
ther CsA nor FK506 had an inhibitory effect on the release.
Another chemokine affected by CN-NFAT inhibitors was CCL3,
whose expression was highly elevated by HKCA, and signifi-
cantly inhibited by CsA and FKS506 (Fig. 5D). Expression of
EGR2 and PTGS2 (COX-2) was increased in response to HKCA
and inhibited by CN-NFAT inhibitors, consistent with already
published results (Fig. 5D).%® The expression of EGR1 was in-
creased by CsA and FK506 treatment (Fig. 5D), suggesting a pos-
sible commutable role of EGR1 and EGR2, when EGR2
expressional downregulation is substituted by upregulation of
EGR1 expression. Expression of GZMB (granzyme B) and TNF
was detected in all samples, with no effect of CN-NFAT inhib-
itors (data not shown). To confirm the NFAT-dependent produc-
tion of chemokines suggested by qPCR data and results from
neutrophil-like HL-60 cells (Fig. 3), we analyzed levels of che-
mokines CCL3 (Fig. 5E) and CCL4 (Fig. 5F), showing their eleva-
tion in response to heat-killed pathogens. Production of
chemokines is abolished by CN-NFAT inhibitors CsA and
FK506 with statistical significance in all combinations of heat-
killed pathogen and inhibitor except CCL3 production after
HKAF in the presence of FK506, but the inhibitory effect is per-
spicuous even in this condition (Fig. 5E, F).

These results revealed that in human neutrophils, genes in-
volved in the regulation of the immune response were negatively
affected by CN-NFAT inhibitors, rather than functional molecules
of immediate response to the pathogen. NFAT-dependent expres-
sion was confirmed for CCL3 and CCL4 at protein level using
ELISA.
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Fig. 3. Release of chemokines by neutrophil-like cells in response to the mostimmunogenic hyphae life form of fungal opportunistic pathogens is NFAT
dependent. HL-60 cells differentiated into a neutrophil-like phenotype were stimulated for 2 h with indicated forms of C. albicans (A) and A. fumigatus
(B). The presence of chemokines CCL2, CCL3, and CCL4 was detected by ELISA. Columns represent the mean + SD from 4 independent experiments.
Stimulation with pathogens was statistically compared with nonstimulated (NS) control without treatments using a parametric ratio paired t test. *P <
0.05. (C-E) HL-60 cells differentiated into neutrophil-like phenotype were stimulated with indicated forms of C. albicans or A. fumigatus with or without
inhibitors. Chemokine presence in the supernatant was detected after 2h of incubation for CCL2 (C), CCL3 (D), and CCL4 (E). Relative inhibition was
calculated as a fold change of released chemokine relative to the stimulated sample. Columns represent the mean + SD from 4 (C. albicans morphotypes)
or 5 (A. fumigatus hyphae, HKCA) experiments with CsA and 3 experiments with TPCA-1 (TPCA). Nonparametric Kruskal-Wallis test was used to
compare the relative inhibition of CsA or TPCA with the stimulated sample. Changes in expression of CCL2 (F), CCL3 (G), and CCL4 (H) chemokines upon
stimulation with the hyphae form of A. fumigatus and C. albicans and with HKCA in the presence or absence of CsA or TPCA detected by gPCR. ACt is
calculated as a relative expression to GAPDH. A parametric ratio paired t test was used to compare stimulated samples with NS control and to compare
the effect of CsA and TPCA on pathogen stimulation. The number of independent experiments varies between conditions from 3 to 6 and is indicated by
the number of dots in the barplots. *P <0.05; *P <0.01; **P <0.001; ***P <0.0001.
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chemoattracted by differently treated neutrophils.

3.6 NFAT-dependent gene expression correlated
with septic patient organ function status
(sequential organ failure assessment score)

We further investigated whether our previous findings could also
provide a broad view of neutrophil-related changes that happenin
response to the pathogens and that eventually could escalate to
sepsis. For this purpose, we used an already published RNAseq da-
taset from PMNs of septic patients®! and sought to identify which
of our previously reported 60 NFAT-dependent genes were pre-
sent in the septic patients’ PMNs. For this purpose, we used the
normalized counts from 11 patients, 6 of which survived until
day 5 after admission to the ICU and 5 of which were deceased
shortly after admission to the ICU. We showed that several CN-
NFAT-regulated genes were expressed in PMNs of patients with
septic shock (Fig. 6A-C). Sepsis patients’ expressed genes were
divided into 3 groups based on normalized counts as genes with
low (Fig. 6A), medium (Fig. 6B), or high (Fig. 6C) expression. CSF1
was identified as a gene with medium expression in the septic co-
hort, and interestingly, its expression significantly correlated with
the sequential organ failure assessment (SOFA) score of septic pa-
tients (Fig. 6D). Although genes for chemokines were character-
ized as genes with low expression, we saw a trend in the
correlation between the number of CCL3-normalized counts
with the SOFA score of deceased septic patients (Fig. 6E) and nor-
malized counts of CCL4 gene negatively correlated with SOFA
score of survived patients (Fig. 6F). These findings suggested the
role of these genes in sepsis resolution.

4, Discussion

The role of NFAT in innate immunity is well established; never-
theless, the exact importance of CN-NFAT signaling varies among
different cell types or pathologies. CN-NFAT signaling governs the
functions of myeloid cells during their development to the control

of their major immune functions,*?* and as such impacts the

therapeutic outcome.?* The direct impact of CN-NFAT inhibitors
on neutrophil functions was poorly understood,’ although nega-
tive impacts of CsA treatment or CN knockdown on mice neutro-
phils function were shown more than 10 yr ago.® We hypothesized
that disruption of neutrophil function by CN-NFAT inhibitors can
be one of the major reasons explaining the observed increased
susceptibility of CN-NFAT inhibitor-treated patients to opportun-
istic infections. Although this adverse effect of CN-NFAT inhibi-
tors was shown many years ago by Calne et al,?® or by Tourneur
et al,,” how CN-NFAT inhibitors affect human neutrophils at mo-
lecular levels and which of their functions are disrupted remains
elusive.”?> Considering already published data about the impact
of CN-NFAT inhibitors on myeloid cell function,'*** deep under-
standing of their impact on neutrophils’ pathogen response can
complete this knowledge. Thus, we investigated the role of
CN-NFAT inhibitors on neutrophil function at the molecular level.

We and others™ have reported the expression of NFATs family
in human neutrophils. Expression of NFATC1 in human neutro-
phils at both messenger RNA and protein levels was already re-
ported by Vega et al.'® We identified NFATC3 (NFAT4) and
NFATC1 (NFAT2) as predominantly expressed in neutrophils.
This expressional pattern of the NFAT family is unique within
myeloid cells’ and differs from T cells, which express mostly
NFATC2 and NFATC1.?° We also identified expression of calcineur-
in subunits (PPP3CA, PPP3CB, PPP3R1) and checked the expression
of PRRs (TLR1-TLR10, CLEC7A [dectin-1]) (data not shown), which
was consistent with the already known expression profile in neu-
trophils.?”-?® This means that neutrophils were able to activate the
CN-NFAT signaling pathway upon pathogen recognition resulting
in the activation of NFAT-dependent gene transcription. As dem-
onstrated by RNAseq data, HKCA and HKAF stimulation of neu-
trophils resulted in massive gene upregulation, while in the
presence of CsA, we detected 61 transcripts from
pathogens-induced genes significantly downregulated. GO
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Fig. 5. In response to fungal pathogens, neutrophils initiate the expression of chemokines and other immunoregulatory molecules in an
NFAT-dependent manner. Expression of CCL2 (A) and PTX3 (B) by human neutrophils was analyzed using gPCR after 2 h stimulation by HKCA or HKAF
in the presence or absence of CN-NFAT inhibitors CsA and FK506. (C) PTX-3 concentration in a medium of neutrophils stimulated for 2 h by HKCA with
or without CsA and FK506 was detected by ELISA. (D) Expression of CCL3, PTGS2, EGR1, and EGR2 in response to HKCA and the impact of CsA and FK506
on their expression was analyzed by gPCR. Stimulation with pathogens was compared with nonstimulated (NS) control without any treatments using a
parametric ratio paired t test; the statistical significance of expressional change with inhibitors treatment was compared with the condition with
stimulation by the relevant pathogen using a parametric ratio paired t test. ACt is calculated as a relative expression to GAPDH in all gPCR experiments.
Levels of CCL3 (E) and CCL4 (F) in a conditioned medium of human neutrophils were measured using ELISA after 2 h of cultivation with heat-killed
pathogens in the presence or absence of CsA or FK506. Nonparametric Kruskal-Wallis test with multiple comparisons was used to evaluate stimulation
with the pathogen and to compare the stimulated sample with respective samples with inhibitors. Columns represent the mean + SD from 4

independent experiments. *P < 0.05; *P <0.01; **P <0.001; ***P < 0.0001.

analysis of NFAT-dependent genes revealed biological processes
connected with the chemotaxis and genes for CCL3, CCL4, and
CSF1, which were shared by all affected processes. The high im-
pact of 2 CN-NFAT inhibitors, CsA and FK506, on CCL3 and CCL2
expression was observed by gPCR analysis after stimulation of
neutrophils by HKCA or HKAF. While NFAT-dependent expression

of CCL2 was already reported in human monocytes** and macro-
phages,?® we reported CCL3 and CCL4 NFAT-dependent expres-
sion in human neutrophils for the first time. Although
neutrophil extravasation elicited by CCL3 was reported to be de-
pendent on PI3Ky signaling, it was not connected with the NFAT
pathway.?® Neutrophil-secreted CCL3 was shown to be essential
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Fig. 6. NFAT-dependent genes are expressed in septic patients and correlate with organ function SOFA scores. (A-C) Spider plots of the expression of
the 60 NFAT-dependent genes in septic patients. Genes were divided based on the means of normalized counts as genes with low (10 to 100 mean
normalized counts) (A), medium (100 to 1,000 normalized counts) (B), and high expression (more than 1,000 normalized counts on average) (C). (D-F)
Spearman’s correlation plots of the normalized counts of CSF1 (D), CCL3 (E), and CCL4 (F) with the SOFA scores of septic patients. Numbers of normalized
counts of CSF1 correlated with SOFA score of septic patients (D). Normalized counts of CCL3 correlated significantly with the SOFA scores of only the
deceased septic patients (E), while normalized counts of CCL4 correlated significantly with the SOFA score of only the day 5 survivors (F).

for the recruitment of dendritic cells in a mouse model of
Leishmania major infection.?’ Charmoy et al.** also showed a tran-
sientimpact on the development of a protective immune response
by influencing T helper 1 cell immune response and suggested the
role of CCL3 in the regulation of immune response to pathogens.>*
RNAseq and gqPCR data also showed NFAT-dependent expression
PTGS2 (COX-2) and EGR genes, which is consistent with already
published observations in mice neutrophils® and for COX-2 also
in human neutrophils during CN-NFAT inhibitor-dependent
IgE-driven allergic response.”

Invasive fungal infections are serious life-threatening compli-
cations after organ or hematopoietic cells transplantation.??7¢
Candida spp. and Aspergillus spp. are the most common opportun-
istic pathogens affecting immunocompromised patients.***’
Antifungal defense is mainly governed by phagocytes and neutro-
phils that have an undoubted role as the most common ones, >4
as disseminated fungal infections are most common in neutro-
penic patients.*!

Considering that CCL2, CCL3, and CCL4 are among the most
important as well as abundant chemokines produced by
neutrophils, and these chemokines are critical for their ability to
chemoattract other immune cells as well as more neutrophils to
the site of infection.?*? We used different life forms of C. albicans
and A. fumigatus to stimulate neutrophil-like (HL-60) cells.

Differentiated HL-60 cells have neutrophil-like phenotype and
also neutrophils’ functional properties as the ability to form
NETs, produce reactive oxygen species, phagocyte, and are cap-
able of chemotaxis, as reviewed by Blanter et al,** and they also
have granules consisting of PTX-3.**** We monitored HL-60 dif-
ferentiation by CD11b marker and we also provided pilot experi-
ments to assess their ability to interact with fungal pathogens
and respond by increased expression of selected genes, as shown
in Supplementary 3. It is known that the 3 morphotypes of C. albi-
cans and A. fumigatus differ in polysaccharide (i.e. B-glucan) con-
tent, and therefore are differently recognized by the immune
system™**>*¢ due to different interactions with host PRRs includ-
ing dectin-1.* The morphogenic transformation from yeast to hy-
phae not only allows fungi to penetrate tissues, but also has
consequences for their immunogenicity, as fungi change the con-
tent of surface polysaccharides during this morphological trans-
formation.*>*%%° The heat-killed pathogens, although dead, can
still be used as dectin-1 agonists, as shown by HKCA recognition
by dectin-1°° by HKAF causing dectin-1-mediated response of
macrophages.*® We confirmed that the hyphae of both pathogens
were the most activatory in terms of chemokine release response.
Only CsA significantly inhibited chemokine response to the hy-
phae form of pathogens, while we did not observe any statistically
significant inhibition by TPCA-1 at the protein level. Expression of
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chemokines was affected by CsA and TPCA-1, confirming the
shared contribution on its regulation by NFAT and nuclear factor
kB pathway. These observations highlight that chemokine release
in response to fungal opportunistic pathogens was crucially de-
pendent on the NFAT pathway. We further showed on primary
human neutrophils that CsA and FK506 have similar effects on
the expression of selected genes, including genes for chemokines,
in which the effect of both inhibitors was confirmed at protein lev-
el for CCL3 and CCL4 chemokines. Although these 2 drugs (CsA,
FK506) interact with different immunophilins in cells and are
used at different concentrations, they eventually inhibit calci-
neurin and by that prevent NFAT dephosphorylation and activa-
tion. Interestingly, Borges et al’' reported the NFATC2
(NFAT1)-independent impact of FK506 on neutrophil migration
using in vivo mice model of sepsis.”! Our data do not corroborate
with their finding, possibly due to the more prominent expression
of NFATC1 and NFATC3 in human monocytes and neutrophils,
while our data showed only very weak expression of
NFATC2.'%> Borges et al’! focused on the CXCL2 chemokine
and its receptor CXCR2, and here we provided a broader molecular
context showing a more complex regulation network of
CN-NFATs.”* We and others®! have suggested that FK506 treat-
ment results in impairment of neutrophil migration, which can
support previously published results on human monocytes™*
and results of this study.

To confirm the defects in the ability of neutrophils to chemoat-
tract other immune cells, we performed a chemotaxis assay using
transwells with monocytes. C-C motif chemokines primarily medi-
ate the migration of monocytes,”>* but it was also shown that
they are involved in the chemoattraction of neutrophils creating a
positive feedback loop.>*™® Our results clearly showed that
HKCA-activated neutrophils chemoattract monocytes within 2 h,
but chemoattraction was inhibited when neutrophils were treated
by CsA prior to HKCA stimulation. This assay modeled the behavior
of neutrophils at the site of the infection, in which they need to prop-
erlyreactto the pathogensin order to attract other immune cells and
more neutrophils to eliminate the invading pathogens.>>*°

Neutrophil status and activation play a key role in sepsis and
COVID-19 resolution and markedly determine clinical out-
comes.’®* A variety of markers are connected with their
disease-associated dysfunctional status, diverging from recently
proposed hepcidin as a marker of septic shock,®” to cytokines, as
interleukin-18 was connected with cardiovascular inflammation
after COVID-19,°® or chemokines.®*®> As we showed the role of
CN-NFAT signaling in proper neutrophil response to pathogens,
its impact in septic conditions should be considered. We took ad-
vantage of the access to samples from the septic patients’ cohort,
in which we have recently focused on the dysfunctional activation
of PMNs, and reanalyzed published RNAseq data.?* This allowed
us to show that genes identified using CN-NFAT inhibitors as
NFAT dependent in our experimental setup were also expressed
by PMNs during sepsis. By correlating the expression of selected
genes with the SOFA score of septic patients, we showed the rele-
vance of NFAT-dependent genes in septic conditions and its pos-
sible connection with sepsis severity. We showed that the
numbers of normalized counts of CSF1 correlated with the SOFA
score of septic patients and that CCL4-normalized counts corre-
lated negatively with the SOFA score of septic survivors, while
CCL3 showed the opposite trend in deceased patients. These find-
ings are even more clinically relevant considering that CCL3 was
shown to be essential to the host resistance even against bacterial
sepsis.®* Furthermore, CCL3 and CCL4 are important biomarkers
in sepsis.®®> CCL4 serum levels were shown to be a predictive

marker of good prognosis of pediatric septic shock patients, as
its serum levels of 140 pg/mL or less, when obtained within 24 h
of admission, predicted a very high likelihood of survival in pedi-
atric septic shock.®® CCL4 was also one of the supposed bio-
markers to discriminate children with sepsis from nonseptic
disease conditions (e.g. clinical malaria and other febrile condi-
tions).®” Moreover, CCL4 and CCL2 plasma levels significantly dif-
fer in 2 groups of septic patients with and without bacteremia.®®

In conclusion, we have provided evidence that the CN-NFAT
signaling pathway is necessary for the proper response of human
neutrophils to opportunistic fungal pathogens. When neutrophils
were treated with CN-NFAT inhibitors, the profound changes in
gene expression, including genes for CCLs, caused impairment
of neutrophils’ ability to chemoattract other immune cells.
Alongside with previously published data by Greenblatt et al.® us-
ing mice neutrophils and others describing the role of NFAT in
myeloid cells, our article amends knowledge about the NFAT
role in human neutrophils. These findings have high clinical rele-
vance, helping to understand the impact of CN-NFAT inhibitors
on the immune system and suggesting that the high susceptibility
of CN-NFAT inhibitor-treated patients to opportunistic infections
is caused by impairment of myeloid cell functions due to de-
creased NFAT activity. Another clinical consequence of the pre-
sented data can be found under septic conditions, as
NFAT-dependent genes were expressed by PMNs from septic pa-
tients, and some of them correlated with sepsis severity. Our
data revealed the vital role of CN-NFAT signaling in the function-
ality of neutrophils. The negative effects of CN-NFAT inhibitors
should be more seriously considered within their clinical applica-
tions. In sum, we showed that the therapeutic CN-NFAT inhibition
impacts important functions of the neutrophils with a potential
impact on increased susceptibility to infections in these vulner-
able patients.
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