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Abstract

Fibroblasts, the most abundant cell type in the human body, play crucial roles in biological processes such as inflammation
and cancer progression. They originate from the mesoderm or neural-crest-derived ectomesenchyme. Ectomesenchyme-
derived fibroblasts contribute to facial formation and do not express HOX genes during development. The expression and
role of the HOX genes in adult fibroblasts is not known. We investigated whether the developmental pattern persists into
adulthood and under pathological conditions, such as cancer. We collected adult fibroblasts of ectomesenchymal and meso-
dermal origins from distinct body parts. The isolated fibroblasts were characterised by immunocytochemistry, and their
transcriptome was analysed by whole genome profiling. Significant differences were observed between normal fibroblasts
from the face (ectomesenchyme) and upper limb (mesoderm), particularly in genes associated with limb development, includ-
ing HOX genes, e.g., HOXA9 and HOXD9. Notably, the pattern of HOX gene expression remained consistent postnatally,
even in fibroblasts from pathological tissues, including inflammatory states and cancer-associated fibroblasts from primary
and metastatic tumours. Therefore, the distinctive HOX gene expression pattern can serve as an indicator of the topological
origin of fibroblasts. The influence of cell position and HOX gene expression in fibroblasts on disease progression warrants

further investigation.
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Introduction

Fibroblasts, vital architects of human tissues, play dynamic
roles in both embryonic development and adult organ func-
tion through their structural support and intricate interac-
tions with epithelial cells. Their roles extend to pathological
processes, where they are pivotal in wound healing, fibrosis
and/or inflammation. For example, fibroblasts are essential
in wound repair, with dysfunction leading to chronic wounds
or excessive scarring, such as hypertrophic or keloid scars
(Coma et al. 2021). They are also central to the progres-
sion of organ fibrosis and inflammatory diseases, including
systemic sclerosis, liver and kidney fibrosis, rheumatoid
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arthritis and coronavirus disease 2019 (COVID-19)-related
lung fibrosis (Gal et al. 2022; Deng et al. 2021; Kisseleva
and Brenner 2021; Lombholt et al. 2023; Yuan et al. 2019).

In the context of cancer, fibroblasts within the tumour
stroma, termed cancer-associated fibroblasts (CAFs), signifi-
cantly influence tumour biology across various cancer types
(Lacina et al. 2022; Plzék et al. 2010). Their activity appears
broad and rather tumour-type unspecific (Dvotankova et al.
2012, 2005). Initially, CAFs were identified in biopsies via
immunohistochemistry using anti-a-smooth muscle actin
(SMA) antibodies, often conflated with myofibroblasts.
However, not all stromal CAFs are myofibroblasts, and
tumour variability in SMA-positive CAFs is significant
(Noviak et al. 2021). The lack of universally accepted CAF
markers warrants further investigation.

Recent single-cell sequencing studies have underscored
the functional diversity of fibroblasts in different tissues
(Driskell and Watt 2015; Sriram et al. 2015; Vorstandlechner
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et al. 2020). This heterogeneity is partly attributable to their
embryonic origins. Fibroblasts can originate from the meso-
derm or the neuroectoderm via neural crest differentiation
(Lynch and Watt 2018; Houzelstein et al. 2000; Le Lievre
and Le Douarin 1975; LeBleu and Neilson 2020). In the
head and neck region, for instance, fibroblasts can derive
from both sources, with those in the facial region stemming
from neural crest-derived ectomesenchyme. In contrast,
those in the posterior region of the head originate from the
mesoderm (Creuzet et al. 2005).

The HOX genes, a conserved family of transcription fac-
tors, are crucial for regulating craniocaudal development.
Their expression is tightly controlled during embryogenesis
(Deschamps and Duboule 2017). In the head and neck, the
HOX gene expression is spatially patterned, with specific
regions exhibiting characteristic expression profiles essential
for normal development and function (Parker et al. 2018;
Miyoshi et al. 2015; Zivicova et al. 201 7). Fibroblasts of the
facial region, derived from neural crest-originated ectomes-
enchyme, are characteristically negative for HOX gene activ-
ity during development (Creuzet et al. 2005). Aberrant activ-
ity of HOX genes in typically HOX-negative regions, such
as the first and second pharyngeal arches, correlates with
facial developmental irregularities (Whiting 1997; Parker
et al. 2018). In other body regions, such as the trunk and
limbs, normal fibroblasts exhibit region-specific HOX gene
activity both pre- and postnatally, affecting adult tissue func-
tions (Miyoshi et al. 2015; Zivicové et al. 2017; Hajirnis and
Mishra 2021; Chang et al. 2002).

Despite extensive research, the stability of HOX gene
activity in adult human fibroblasts of ectomesenchymal
origin under various conditions remains poorly understood.
Fibroblasts are an extremely heterogeneous cell type, influ-
encing the tissue microenvironment in both normal and
pathological states (Lynch and Watt 2018; Miki and Manresa
2023). However, this heterogeneity is often overlooked in
research design. Therefore, we aimed to investigate whether
the developmental HOX gene signature is preserved in adult
fibroblasts under physiological and pathological conditions.
Inspired by a previous study on CAF origin (Arina et al.
2016), we investigated the relationship between the origin
of CAFs and HOX gene expression. Understanding whether
CAFs originate locally or migrate to tumour sites from dis-
tant locations could provide valuable insights. By comparing
transcriptome profiles of fibroblasts from the face (ectomes-
enchymal origin) and forearm (mesodermal origin), we
sought to elucidate the differences in HOX gene expression
postnatally. Our analysis extended to CAFs isolated from
various tumours (including those from the face and other
body parts, such as the brain). Gene expression of fibroblasts
and its relation to their developmental origin may reveal the
effects of postnatal age and pathological conditions (such as
cancer) on the HOX gene profile.
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Material and methods
Human subjects

Normal fibroblasts and fibroblasts from the pathological
tissues were collected between 2017 and 2023, with the
explicit informed consent of all involved donors, and after
approval of the Ethics Committees of the following Prague
hospitals: General University Hospital, University Hospi-
tal Kralovské Vinohrady, University Hospital in Motol, Na
Homolce Hospital and Central Military University Hos-
pital. We obtained residual tissue samples not needed for
diagnostic purposes and used them for fibroblast isolation.

A collection of facial dermal fibroblasts (n=6) was pre-
pared from skin biopsies harvested from the facial skin of
young adults (aged 20-30 years old). The position was
standardised in all cases; the biopsy was taken in front of
the external ear, approximately 2.5 cm ventral from the
tragus. An identical number (n =6, age-matched) of skin
tissue samples was collected from the upper forearm skin
(radial side, approximately 7.5 cm distal from the flexural
line). The standardised biopsy sites are presented in the
schematic figure (Supplementary Fig. 1). Other analysed
fibroblasts were collected from various body parts, includ-
ing the oral cavity and internal organs, such as the pan-
creas (Table 1). The pathological samples were selected
to cover various CAFs and skin samples with abnormal
immune responses, e.g., systemic sclerosis (SSF). SSF is
known to exhibit unique pathological behaviour, includ-
ing excessive activation and resistance to apoptosis, which
are features also seen in CAFs. Subgalear fibroblast were
selected as the best available control for the intracranial
CAPFs. For ethical reasons, we could not collect cells other
than these cells excised during the approach to the brain
tumours. Samples originating from regions derived from
neuroectoderm (face, oral cavity, forebrain) were consid-
ered as ectomesenchymal. Intracranial cells are further
described in Supplementary Table 1.

The total number of samples derived from normal and
pathological tissues was 85 and 97, respectively. Tran-
scriptome profiling of these samples was performed using
either microarrays (70 normal samples and 76 pathologi-
cal samples) or RNA sequencing (RNA-Seq) (17 normal
samples and 19 pathological samples). The technology
used for sample profiling is specified in the figure legends.

Fibroblast isolation and characterisation
Fibroblasts from normal and pathological tissues were iso-

lated and characterised as described earlier (Dvorankova
et al. 2019). In the case of glioblastomas, brain metastases,
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Table 1 Source of the fibroblasts according to diagnosis and location

Source Abbreviation Number  Number of Number of
of sam- mesoderm ectomesenchyme
ples samples samples
Normal dermal fibroblasts — face” Face 6 0 6
Normal dermal fibroblasts — forearm/trunk/leg” Forearm/trunk/leg 6/6/6 6/6/6
Normal dermal fibroblasts DF 56 25 31
Normal dermal fibroblasts — deep dermis and adipose body of hypodermis AF 4 4
Normal fibroblasts from oral mucosa MuF 8 0 8
Normal fibroblasts from the soft tissue between galea aponeurotica and Subgalear 5 5
calvary periost
Fibroblasts (dermal) from systemic sclerosis SSF 6 6
Fibroblasts from epileptogenic focus PRE 3 0 3
Fibroblasts from the pancreas — collected distant from ductal adenocarci- PANF_control 2 2
noma tissue
CAFs from basal cell carcinoma BCCF 23 20
CAFs from squamous cell carcinoma SCCF 13 10
CAFs from sporadic keratoacanthoma KAF_S 7 7 0
CAFs from BRAF inhibitor-induced keratoacanthoma KAF_ I 13 13 0
CAFs from malignant cutaneous melanoma MELF 6 6 0
CAFs from ductal adenocarcinoma of the pancreas PANF 8 8 0
CAFs from glioblastoma GBM 6 0 6
CAFs from breast cancer brain metastasis META 3 Unknown origin Unknown origin
CAFs from lung cancer brain metastasis META 4 Unknown origin Unknown origin
CAFs from spindle cell poorly differentiated sarcoma brain metastasis META 1 Unknown origin Unknown origin
CAFs from primary serous peritoneal carcinoma brain metastasis META 1 Unknown origin Unknown origin
CAFs from a brain metastasis of clear cell renal carcinoma META 1 Unknown origin Unknown origin

Normal dermal fibroblasts from the trunk and leg were analysed by immunocytochemistry only

*Samples with exactly defined location

pharmacoresistant epilepsy and subgalear fibroblasts,
fibroblasts were isolated by direct magnetic-activated cell
sorting (MACS) using a fibroblast-specific kit (Fibroblast
MicroBeads, Miltenyi, Bergisch Gladbach, Germany)
according to manufacturer’s instructions. The purity of
the cells was evaluated using a panel of antibodies (Sup-
plementary Table 2), as described previously (Balaziova
et al. 2021). Fibroblasts were expanded in Dulbecco’s
modified Eagle’s medium [DMEM with high glucose
content (4.5 g/L)], supplemented with 10% foetal bovine
serum (both from Biosera, Nuaille, France) with antibiot-
ics (penicillin 100 IU/mL, streptomycin 100 ug/mL and
gentamycin 100 ug/mL, all Sigma Aldrich, Prague, Czech
Republic), and maintained in 5% CO, atmosphere and
37 °C in a humidified incubator. Fibroblasts from early
passages (before passage no. 5) were used to measure the
cell volume, growth characteristics and transcriptomic
analyses.

For cell counting and analyses, cells were routinely har-
vested in trypsin (0.25%) and ethylenediaminetetraacetic
acid (EDTA) (0.02%) solution (Biosera, Nuaille, France)
and vigorously resuspended in the culture medium. For cell

counting, the final cell suspension (200 pL) was diluted 1:50
using Isoton II diluent (Life Sciences, Indianapolis, USA)
and measured using a Beckman Coulter Particle Counter Z2
(Life Sciences, Indianapolis, USA) following the manufac-
turer’s protocol. The cells were counted between the lower
and upper thresholds of 12 and 24 pm, respectively. The
size distribution measurement of the cell population within
this range was plotted in 256 identical bins and statistically
evaluated using a one-way ANOVA test (using GraphPad
Prism software, version 8.0.1).

For the proliferation assay, 5000 cells were seeded in a
96-well plate, and the confluence was monitored using an
IncuCyte S3 live-cell analysis instrument (Sartorius, Goet-
tingen, Germany) every 2 h for 6 days. The normalised data
curve (normalisation to initial confluence value) was plotted
using GraphPad Prism. Two biological replicates and six
technical replicates were used for each group.

For immunocytochemical analysis, we cultured cells from
12 donors (6 donors of facial fibroblasts and 6 donors of
matched forearm, leg and trunk fibroblasts, approximately
20,000 cells/cm?) on sterile microscopic slides for 48 h.
The cells were fixed in buffered paraformaldehyde (2%)
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solution (Sigma—Aldrich, Prague, Czech Republic) and sub-
sequently permeabilized by Tris-buffered saline (TBS) with
0.2% Tween 20 (Sigma—Aldrich, Prague, Czech Republic).
Endogenous peroxidase was blocked by incubation with 3%
hydrogen peroxide in TBS at room temperature for 20 min.
To block non-specific protein binding and dilute primary
antibodies, we used the Universal IHC Blocking/Diluent
(Leica, Wetzlar, Germany). The antibodies in 1:100 dilu-
tion were used for fibroblast characterisation (Supplemen-
tary Table 2).

After overnight incubation at 4 °C, the slides were
washed, and the immunohistochemical reaction was devel-
oped using Histofine® High Stain™ HRP (MULTI) and
N-Histofine® Simple Stain™ AEC Solution (both Nichirei
Biosciences Inc, Tokyo, Japan). Slides were counterstained
in Gill’s haematoxylin and mounted in Biomount Aqua
(both Baria, Prague, Czech Rep.). Negative controls were
performed using species-specific isotype control antibod-
ies (Thermo Fisher Scientific, Waltham, MA, USA). The
bright-field images were acquired using a Leica DM2000
microscope equipped with LASx software.

Transcriptome profiling by microarrays

Total RNA was isolated using the RNeasy Micro Kit (Qia-
gen, Hilden, Germany) according to the manufacturer’s
protocol. The quantity and quality of RNA were analysed
using Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). All RNA samples had RNA integ-
rity number (RIN) above 9. Total RNA (200 ng) was ampli-
fied using the Illumina TotalPrep RNA amplification kit
(Ambion; Thermo Fisher Scientific, Waltham, MA, USA),
and 750 ng of the amplified RNA was hybridised on Illu-
mina HumanHT-12 v4 chips (Illumina, San Diego, CA,
USA) following the manufacturer’s protocol.

Raw data were processed using the oligo (Carvalho and
Irizarry 2010) and limma (Ritchie et al. 2015) packages of
R/Bioconductor. Data were background corrected using the
normal—exponential model and quantile normalised. Batch
effects were corrected using the sva (Leek et al. 2012) pack-
age. Log,-transformed normalised expression data were used
for heatmap visualisation using the ComplexHeatmap (Gu
et al. 2016) R package.

Transcriptome profiling by RNA-Seq

Total RNA was prepared from tissue cultures by the RNe-
asy Micro Kit (Qiagen, Hilden, Germany). RNA qual-
ity was controlled by Agilent 2100 Bioanalyzer, and only
samples with RIN above 7 were used for further prepara-
tions. Sequencing libraries were prepared from a 1 pg input
amount of total RNA by a KAPA mRNA HyperPrep Kit,
including polyA selection and barcoding with a KAPA UDI
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Adapter Kit (all by Roche). An equimolar pool of libraries
was sequenced by the Illumina NextSeq 500 platform using
75 nt long single-end reads.

Technical quality control and gene quantification were
done using the nf-core/rnaseq v3.4 bioinformatics pipeline
(Ewels et al. 2020) with STAR mapping (Kim et al. 2015)
and Salmon quantification (Patro et al. 2017). GRCh38
(ensEMBL assembly version 104) was selected as the ref-
erence genome (Howe et al. 2021). Genes expressed only
in a single sample were discarded. The DESeq?2 (v1.38.3)
(Love et al. 2014) Bioconductor (v3.16) R package was
used to identify differentially expressed genes. Significant
changes in gene expression were defined by a two-fold
change in gene expression intensity and false discovery rate
(FDR) <0.1. Shrunken log-fold change estimates were used
[adaptive shrinkage estimator (Stephens 2017)]. The gene
set enrichment analysis (Subramanian et al. 2005) was per-
formed on the Gene Ontology terms (Ashburner et al. 2000;
Aleksander et al. 2023) using the ClusterProfiler (Wu et al.
2021) package. Boxplots present log,-transformed quantile
normalised limma (Ritchie et al. 2015) TPM values from
Salmon. The boxes display median, upper and lower quar-
tiles, whiskers denote range of values with outliers excluded.
Heatmaps were created using the ComplexHeatmap (Gu
et al. 2016) package on standardised quantile-normalised
TPM values (z-score).

The transcriptomic data sets used in this article are avail-
able in the ArrayExpress database (https://www.ebi.ac.
uk/biostudies/arrayexpress) under the accession numbers
E-MTAB-13241, E-MTAB-13242 and E-MTAB-13243.
Any additional information required to reanalyse the data
reported in this paper is available from the corresponding
authors upon reasonable request.

Results

Comparison of facial fibroblasts
of ectomesenchymal origin and forearm fibroblasts
of mesodermal origin

Both types of dermal fibroblasts were large spindle-shaped
cells usually possessing several processes. Their morphol-
ogy varied according to the population density. However,
no statistically significant difference in morphology was
observed across the compared populations. Facial fibro-
blasts were slightly larger; however, the difference was
not statistically significant (cell diameter, p-value=0.19)
(Fig. 1A). The growth kinetics of facial- and limb-origi-
nated fibroblasts were identical (Fig. 1B). According to the
immunocytochemical analysis, the expression of vimentin
was approximately the same in both types of fibroblasts
(Fig. 1C). Conversely, immunocytochemical detection
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Fig. 1 Measurements of cell volume (A) and growth characteristics
(B) along with immunocytochemical detection of vimentin, nes-
tin, aSMA, CD271, S100, and Ki67 (C) in adult dermal fibroblasts
derived from the face and forearm. Expression of the transcripts for
all studied proteins is also shown (D). Facial fibroblasts were some-
what larger than cells harvested from the dermis of the forearm (A),
but their growth kinetic was identical (B). [Growth curves were plot-
ted as normalised to the baseline scan confluence value. Error bars
represent standard deviation (s.d.) calculated from the well repli-
cates (n=6 technical replicates) for each fibroblast type (face n=2,
forearm n=2 biological replicates); the observed differences were

demonstrated that the expression of nestin, a-smooth muscle
actin (aSMA), S100 protein and CD271 (NGFR) was higher
in facial- than in forearm-originated fibroblasts (Fig. 1C).
The expression of proliferation marker Ki-67 was similar
in both types of fibroblasts. The higher expression of nestin
and aSMA was also confirmed at the mRNA level (Fig. 1D).

RNA-Seq transcriptome analysis revealed significant
differences in the transcription profile between ectomesen-
chyme-originated fibroblasts prepared from the face. and
mesoderm-originated fibroblasts from the upper forearm of
adult donors, where 959 genes were differentially expressed
(Fig. 2A). Gene set enrichment analysis showed that Gene
Ontology terms related to development and morphogenesis
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not statistically significant.] (C) The expression of vimentin was not
influenced by fibroblast origin. The expression of nestin and aSMA
was significantly higher ("p <0.05) at both mRNA and protein levels
in facial fibroblasts. Although the positivity for SI00A6 protein was
higher in facial fibroblasts, the transcript level (S100A6) was the same
in both fibroblast types. CD271 was higher in facial fibroblasts than
in fibroblasts from the forearm at the protein level, but there was no
difference at the mRNA level. The type of fibroblasts did not influ-
ence the expression of Ki67. Negative control exhibited no positivity.
The scale bar indicates 200 pm

were the most enriched in differentially expressed genes
(Fig. 2B). The expression of HOX genes was well marked
in fibroblasts prepared from the forearm in comparison with
fibroblasts from the face, as shown in the volcano plot and
heatmap in Fig. 3. Conversely, the expression of MEISI and
PRDM©6 genes was upregulated in facial fibroblasts (Sup-
plementary Fig. 2).

When we focused our interest on genes participating in the
development of the upper and lower limbs, we detected sig-
nificantly higher activity of the HOXA9, HOXD9, HOXAIO0,
HOXDI10, HOXAl1, HOXDI1, HOXA13 and TBX5 genes in
the forearm fibroblasts (all FDR <0.001). As expected, the
activity of the TBX4 gene, which participates in lower limb
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Fig.2 Heatmap demonstrating the difference between the expres-
sion profiles of dermal fibroblasts prepared from the forearm and face
(A). Subgalear fibroblasts, presumably also mesoderm-originated,
are included for comparison. Differences between adult ectomesen-
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Fig.3 Heatmap of homeobox genes that are differentially expressed
between dermal fibroblasts prepared from the human face (ectomes-
enchyme) and the forearm (mesoderm) (A). Subgalear fibroblasts are
included for comparison. The volcano plot (B) demonstrates that the
homeobox genes are the most upregulated genes in fibroblasts pre-
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chyme-originated fibroblasts from the face and mesoderm-originated
fibroblasts from the forearm reflect the regulatory cascades important

for morphogenesis and development (B)
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pared from the forearm. This difference is primarily attributable to
the absence of activity of HOX genes in facial fibroblasts. Since the
facial fibroblasts were collected only from female donors, the volcano
plot also shows a distinct set of Y-linked genes. The HOX gene signal,
however, does not depend on the donor’s sex
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Fig.4 Examples of the HOX genes participating in developing ver-
tebrate limbs and the TBX5 gene controlling the formation of upper
limbs. The genes displayed significantly stronger expression in fibro-
blasts prepared from the forearm than in fibroblasts prepared from

development, was not upregulated (FDR > 0.9, Fig. 4; Sup-
plementary Fig. 3).

To test the applicability of this gene expression pattern for
identifying the origin of fibroblasts, we employed a collection
of fibroblasts isolated from subgalear soft connective tissue.
These samples (isolated from occipital to parietal regions) pro-
vided cells that exhibited the activity of HOXCS5 and HOXC4
genes, as demonstrated in the heatmap (Fig. 3). Notably, this
activity of HOX genes strikingly differed from the dermal
fibroblasts isolated from the viscerocranium and forearm fibro-
blasts, as depicted in Figs. 2 and 3.

Verification of selected HOX proteins
by immunocytochemistry

Selected proteins, i.e., HOXC6, HOXCS, HOXD10, TBX4 and
TBXS were also detected by immunocytochemistry in cultured
fibroblasts originating from ectomesenchyme (face) and meso-
derm (trunk, forearm and leg). We observed no signal of the
presence of these proteins in the cell nucleus. The specific pos-
itivity of HOX proteins, in the form of granules, was detected
in the cytoplasm of all studied types of fibroblasts. It was very
low in facial cells (ectomesenchyme) and the strongest in the
trunk (Fig. 5). Concerning the presence of products of TBX4
and TBXS5 genes, the very low signal for TBX4 protein was
observed only in the cytoplasm of leg-originated fibroblasts,
and the TBXS protein signal was stronger in fibroblasts from
the forearm than in the cells from the leg (Fig. 5), reflecting
the important role of these proteins in the development of the
lower and upper limbs, respectively.

Fibroblasts from different pathological tissues
retain the expression activity of the homeobox
genes

The HOX gene expression pattern was evaluated in a
broad collection of CAFs isolated from various primary or

facial skin. A negligible activity of T7BX4, which is known to be
important in the development of the lower limb, was observed in both
facial- and forearm-originated fibroblasts

secondary tumours and several other pathological tissues
(summarised in Table 1). When the source of tissue was in
the body areas where fibroblasts are of mesodermal origin,
fibroblasts prepared from these pathological tissues, includ-
ing CAFs, demonstrated high expression of the HOX genes.
We also analysed a sample of activated fibroblasts originat-
ing from mesoderm prepared from a patient suffering from
systemic sclerosis. Similarly to mesoderm-originated nor-
mal dermal fibroblasts and activated CAFs, these SSF cells
expressed HOX genes (Fig. 6).

Conversely, CAFs from tumours arising in the ectomes-
enchyme-dependent areas were devoid of HOX gene expres-
sion, with scarce exceptions (Fig. 6). A similar trend was
confirmed in mesenchymal cells isolated from human
glioblastomas (GBM, malignant primary brain malignant
tumour) and secondary brain tumours (metastases of various
cancer types to the brain) (Fig. 7). Of note, fibroblasts pre-
pared from epileptogenic foci in the brain were also devoid
of HOX gene activity (Fig. 7).

Determination of the effect of sex on homeobox
gene expression

Next, we decided to determine whether the homeobox code
depends on the sex of the patients by comparing gene expres-
sion in female and male samples within individual sample
groups. Only the groups, where each sex was represented
by at least three samples were selected for the analysis (DF
from head, DF from body, forearm, BCCF, PANF, META,
and GBM). KAF_I samples were disregarded owing to pos-
sible influence of the biological treatment. The observed
significantly differentially expressed homeobox genes are
presented in Supplementary Table 3. In the normal cells, we
did not observe any reproducible differences. In the GBM
group, we noticed changes in several homeobox genes,
e.g., NKX3-1, HOXA10, PROXI1, EN2, DLX] and HOXB3
(all FDR <0.05 and at least fourfold deregulation), which
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Fig.5 Immunocytochemical

Forearm Leg

detection of HOXC6, HOXCS,
HOXD10, TBX4 and TBX5 in
normal dermal fibroblasts pre-
pared from the face (ectomes-
enchyme), trunk, forearm and
leg (all mesoderm). Nuclear
positivity was detected in none

HOXC6

of the fibroblast types. The
lowest cytoplasmic granular
signal was present in facial cells
(blue frames), and the strongest
HOXC6, HOXC8 and HOXD10
signals in the cells prepared

HOXCS8

from the trunk (red frames).

The positivity for TBX4 was
extremely low, yet the cells
from the lower limb (red frame)
displayed a clear signal. The
highest signal for TBX5 was
observed in fibroblasts from the
forearm (red frame). A char-

HOX D10

acteristic cell from the marked
position of the panels with the
lowest and strongest signals is
detailed in the insets. Negative
control (NC) was included to
show the specificity of the reac-
tion. The scale bar represents
200 pm

TBX4

TBX5

NC

Ectomesenchyme

were all upregulated in the samples from female patients. In
PANF, we observed the strongest changes in expression of
the IRX4 and NKX2-5 genes. As the differences were tissue
specific, we could not prove any general difference in the
homeobox gene expression with respect to patient sex.

Discussion

Our study revealed that adult facial dermal fibroblasts,
originating from the ectomesenchyme, were morphologi-
cally very similar to dermal fibroblasts of mesodermal ori-
gin from the forearm. However, the cells differed in expres-
sion of homeobox genes. Consistent with their origin, adult
facial fibroblasts exhibited negligible HOX gene activity.
Conversely, HOX genes were expressed in all adult fibro-
blasts of mesodermal origin (Hahn et al. 2021; Miyoshi
et al. 2015). Notably, genes such as HOXA/D9, HOXA/

@ Springer

Mesoderm

D10, HOXA/DI11 and HOXA 13, which participate in limb
primordium development, were significantly upregulated
in dermal fibroblasts from the adult forearm. These results
are supported by murine developmental models (Desanlis
et al.2020) and studies of HOX gene activity in adult mouse
limb fibroblasts (Okubo et al. 2018). The TBX4 and TBX5
genes, which determine upper and lower limb discrimination
(Duboc and Logan 2011; Duboc et al. 2021), also showed
distinct patterns, with TBX5 highly active in forearm fibro-
blasts, reflecting their positional memory.

Analysis of the adult dermal fibroblasts from the ectomes-
enchyme and mesoderm exhibited well-conserved transcrip-
tomic programs associated with development, including
forelimb and occipitotemporal region morphogenesis (Sup-
plementary Fig. 2). Facial fibroblasts of ectomesenchymal
origin expressed MEISI and PRDM6 more actively than
mesodermal-origin fibroblasts. MEISI’s roles include neural
crest development, regulation of cell proliferation, stemness
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Fig.6 The expression profile of HOX genes in fibroblasts prepared from different pathological tissues, including CAFs, respects the mesodermal

or ectomesenchymal origin of the cells. See Table 1 for abbreviations

and differentiation (Aksoz et al. 2017; Maeda et al. 2001;
Jiang et al. 2021; Blasi and Bruckmann 2021). The function
of the PRDM6 gene is associated with neural crest cell func-
tion and heart development (Hong et al. 2022). The detection
of these genes in facial fibroblasts reflects their developmen-
tal origin and supports the idea that HOX gene expression
correlates with location. Using a consistent control, col-
lected from healthy donors, we explored the potential role of
the positional HOX-coded signature in various pathologies.
Our data confirm the conservation of the HOX code in nor-
mal and cancer-associated fibroblasts (CAFs) isolated from
a broad panel of tissues and cancer types in adults, including
skin, oral mucosa, skin cancers (basal cell carcinoma, squa-
mous cell carcinoma, melanoma), non-tumorous pancreatic
tissue from patients with pancreatic cancer, pancreatic ductal
adenocarcinoma, brain tissue and malignant brain tumours
(glioblastoma and brain metastases).

The origin of CAFs has been a long-standing topic in can-
cer biology (Orimo and Weinberg 2006). Suggested source
populations include resident fibroblasts, myofibroblasts,
pericytes, preadipocytes, smooth muscle cells, mesenchy-
mal stem cells (MSCs), and bone marrow-derived progenitor
cells (BM-MSCs) (Karnoub 2007; Li et al. 2021). A broad
comparison of BM-MSCs from different body parts revealed
that most BM-MSCs express HOX genes, with specific sets

varying by anatomical origin (Picchi et al. 2013). These
HOX codes, characteristic of MSCs, are maintained during
differentiation, indicating an intrinsic property (Ackema and
Charité, 2008). Clinically relevant BM-MSCs typically show
increased expression of HOXA9, HOXA10, HOXB4, HOXB?7,
HOXCS8, HOXC10 and HOXDS (Coenen et al. 2015). The
positional memory of MSCs is evidenced by the mainte-
nance of HOX code expression in culture (Wagner et al.
2006). In our dataset (Fig. 6), the listed HOX genes were
not highly expressed in CAFs from intracranial metastases,
suggesting that BM-MSCs are unlikely to be the primary
source of these stromal cells. However, this does not exclude
their regulatory role in brain metastases. From this point of
view, our data generally suggest that local cells predomi-
nantly serve as the source of CAFs in almost all samples
evaluated, with only a few exceptions to this principle.
One particularly intriguing group worthy of closer
attention is fibroblasts isolated from glioblastoma sam-
ples. In several CAF samples derived from these highly
malignant brain tumours, we observed a variable number
of HOX genes expressed at varying intensities (Fig. 7).
This was in stark contrast to control samples from phar-
macoresistant epilepsy foci, where HOX gene transcription
was generally silent, as expected, owing to their ectomes-
enchymal origin. Interestingly, subgalear fibroblasts from
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Fig.7 CAFs prepared from human glioblastoma (GBM) samples and
brain metastases of malignant tumours (META) exhibited negligible
activity of the HOX genes. Similarly, fibroblasts from the epilepto-
genic foci of the brain (PRE) exhibit no activity of HOX genes, in

very proximal positions on the outer side of cranial bones
expressed a panel of HOX genes with prominent intensity,
aligning with the expected mesodermal development of the
parieto-occipital region (Carlson 2018). Notably, the HOX
gene transcriptional profile in GBM CAFs was mostly
non-overlapping with subgalear fibroblasts, suggesting a
distant origin of CAFs in GBM, possibly including mesen-
chymal stem cells or circulating fibrocytes of mesodermal
origin (Lacina et al. 2022; Busek et al. 2016). Another
potential source of CAFs in GBM is vascular wall-derived
MSCs (VW-MSCs), located within the vascular stem
cell niche or vasculogenic zone of the blood vessel wall.
These MSCs are characterized by increased expression
levels of HOXB7, HOXC6, HOXCS and several other HOX
genes (Klein et al. 2013). In one case, the glioblastoma
was later rediagnosed as gliosarcoma, and thus, the HOX
gene expression may stem from contamination of CAFs
by tumour mesenchymal cells. Our findings suggest that,
at least in some patients, distant migrating populations
can be a potential source of CAFs in GBM. This further

@ Springer

contrast to fibroblasts prepared from the subgalear soft tissue cover-
ing the dorsal part of the skull. The sample NCH353G, denoted by
an asterisk, was later rediagnosed and may contain tumour-originated
mesenchymal cells

highlights the HOX code as a master regulator of cellular
identity (Klein 2021).

Linking cancer with long-standing inflammatory condi-
tions presents numerous clinically relevant aspects (Lacina
et al. 2019). The regulators of immunity and inflamma-
tion, such as epigenetic modifications (Rath et al. 2022),
may lead to aberrant promoter methylation of various genes
(Jurdziniski et al. 2020) and dysregulation of their expression
activity. To explore whether such dysregulation occurs in
the HOX genes, dermal fibroblasts from patients suffering
from systemic sclerosis (SSF) were included in our analy-
sis. Data on fibroblasts are limited, but in the context of
CAF biology, activated synovial fibroblasts from patients
with autoimmune joint damage produce factors according to
joint position reflected in their HOX code (Frank-Bertoncelj
et al. 2017). These factors influence the clinical status of
arthritis. In this context, robust data suggest that HOX gene
expression or dysregulation influences cancer cell proper-
ties, with clear clinical relevance (Belpaire et al. 2022; Mor-
gan et al. 2022; Wang et al. 2022). Both cancer-inhibiting
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and cancer-supporting roles have been reported. It remains
unclear how the absence or expression of the HOX genes
might affect cancer progression, as observed in leukaemia
and solid tumours (Awgulewitsch 2003; Feng et al. 2021; Xu
et al. 2022). Despite extensive data on HOX gene expression
in cancer cells, information on their expression in CAFs,
and their disease significance, remains limited (Wang et al.
2020).

Our study provides valuable insights into the HOX signa-
ture in fibroblasts of different embryonic origins but has cer-
tain limitations and characteristics of a pilot study. The anal-
ysis was conducted on fibroblasts isolated from normal skin
and tumours and from patients with systemic sclerosis, cul-
tured from the second to fifth passage. While the uniformity
of results supports the conclusions, the artificial conditions
of in vitro cell culture present some limitations. We quan-
tified HOX gene expression in three primary cell lines of
BCCEF and melanoma. The results of this limited experiment
suggested that the expression does not depend on cultivation
time (4-24 weeks) or on cultivation conditions (Petri dish
versus xenografts) (data not shown). Although our study
includes a relatively large collection of solid tumours with
uniform results, the number of samples for each diagnosis is
relatively small, limiting the generalizability of our findings.
Gene expression was verified in only a few representative
samples at the protein level. This highlights the necessity
for future studies to include comprehensive protein valida-
tion. In addition, single-cell sequencing would be essential
to determine the heterogeneity of CAFs within individual
tumours, allowing for a comparison of HOX gene expression
with the activity of other genes. We did not detect any gen-
eral changes in homeobox gene expression between sexes.
However, we observed changes in their expression between
female and male patients suffering from glioblastoma or
pancreatic carcinoma. These topics will represent the next
steps in our research.

From a practical standpoint, our data highlight the critical
importance of considering the embryonic origins of fibro-
blasts in biomedical research. The specificity of the ectomes-
enchyme-based cancer microenvironment, often overlooked,
is crucial for accurate experimental outcomes. Proper fibro-
blast controls are essential and mixing fibroblasts of different
origins (ectomesenchyme versus mesoderm) is incorrect and
can lead to misleading results. Neglecting the developmental
origin of fibroblasts can lead to misinterpreted data, even
with advanced ‘omics’ methods. Considering their origin is
crucial for the validity and applicability of research findings
in cancer biology and regenerative medicine.
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