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Abstract
Fibroblasts, the most abundant cell type in the human body, play crucial roles in biological processes such as inflammation 
and cancer progression. They originate from the mesoderm or neural-crest-derived ectomesenchyme. Ectomesenchyme-
derived fibroblasts contribute to facial formation and do not express HOX genes during development. The expression and 
role of the HOX genes in adult fibroblasts is not known. We investigated whether the developmental pattern persists into 
adulthood and under pathological conditions, such as cancer. We collected adult fibroblasts of ectomesenchymal and meso-
dermal origins from distinct body parts. The isolated fibroblasts were characterised by immunocytochemistry, and their 
transcriptome was analysed by whole genome profiling. Significant differences were observed between normal fibroblasts 
from the face (ectomesenchyme) and upper limb (mesoderm), particularly in genes associated with limb development, includ-
ing HOX genes, e.g., HOXA9 and HOXD9. Notably, the pattern of HOX gene expression remained consistent postnatally, 
even in fibroblasts from pathological tissues, including inflammatory states and cancer-associated fibroblasts from primary 
and metastatic tumours. Therefore, the distinctive HOX gene expression pattern can serve as an indicator of the topological 
origin of fibroblasts. The influence of cell position and HOX gene expression in fibroblasts on disease progression warrants 
further investigation.
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Introduction

Fibroblasts, vital architects of human tissues, play dynamic 
roles in both embryonic development and adult organ func-
tion through their structural support and intricate interac-
tions with epithelial cells. Their roles extend to pathological 
processes, where they are pivotal in wound healing, fibrosis 
and/or inflammation. For example, fibroblasts are essential 
in wound repair, with dysfunction leading to chronic wounds 
or excessive scarring, such as hypertrophic or keloid scars 
(Čoma et al. 2021). They are also central to the progres-
sion of organ fibrosis and inflammatory diseases, including 
systemic sclerosis, liver and kidney fibrosis, rheumatoid 

arthritis and coronavirus disease 2019 (COVID-19)-related 
lung fibrosis (Gál et al. 2022; Deng et al. 2021; Kisseleva 
and Brenner 2021; Lomholt et al. 2023; Yuan et al. 2019).

In the context of cancer, fibroblasts within the tumour 
stroma, termed cancer-associated fibroblasts (CAFs), signifi-
cantly influence tumour biology across various cancer types 
(Lacina et al. 2022; Plzák et al. 2010). Their activity appears 
broad and rather tumour-type unspecific (Dvořánková et al. 
2012, 2005). Initially, CAFs were identified in biopsies via 
immunohistochemistry using anti-α-smooth muscle actin 
(SMA) antibodies, often conflated with myofibroblasts. 
However, not all stromal CAFs are myofibroblasts, and 
tumour variability in SMA-positive CAFs is significant 
(Novák et al. 2021). The lack of universally accepted CAF 
markers warrants further investigation.

Recent single-cell sequencing studies have underscored 
the functional diversity of fibroblasts in different tissues 
(Driskell and Watt 2015; Sriram et al. 2015; Vorstandlechner 
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et al. 2020). This heterogeneity is partly attributable to their 
embryonic origins. Fibroblasts can originate from the meso-
derm or the neuroectoderm via neural crest differentiation 
(Lynch and Watt 2018; Houzelstein et al. 2000; Le Lievre 
and Le Douarin 1975; LeBleu and Neilson 2020). In the 
head and neck region, for instance, fibroblasts can derive 
from both sources, with those in the facial region stemming 
from neural crest-derived ectomesenchyme. In contrast, 
those in the posterior region of the head originate from the 
mesoderm (Creuzet et al. 2005).

The HOX genes, a conserved family of transcription fac-
tors, are crucial for regulating craniocaudal development. 
Their expression is tightly controlled during embryogenesis 
(Deschamps and Duboule 2017). In the head and neck, the 
HOX gene expression is spatially patterned, with specific 
regions exhibiting characteristic expression profiles essential 
for normal development and function (Parker et al. 2018; 
Miyoshi et al. 2015; Živicová et al. 2017). Fibroblasts of the 
facial region, derived from neural crest-originated ectomes-
enchyme, are characteristically negative for HOX gene activ-
ity during development (Creuzet et al. 2005). Aberrant activ-
ity of HOX genes in typically HOX-negative regions, such 
as the first and second pharyngeal arches, correlates with 
facial developmental irregularities (Whiting 1997; Parker 
et al. 2018). In other body regions, such as the trunk and 
limbs, normal fibroblasts exhibit region-specific HOX gene 
activity both pre- and postnatally, affecting adult tissue func-
tions (Miyoshi et al. 2015; Živicová et al. 2017; Hajirnis and 
Mishra 2021; Chang et al. 2002).

Despite extensive research, the stability of HOX gene 
activity in adult human fibroblasts of ectomesenchymal 
origin under various conditions remains poorly understood. 
Fibroblasts are an extremely heterogeneous cell type, influ-
encing the tissue microenvironment in both normal and 
pathological states (Lynch and Watt 2018; Miki and Manresa 
2023). However, this heterogeneity is often overlooked in 
research design. Therefore, we aimed to investigate whether 
the developmental HOX gene signature is preserved in adult 
fibroblasts under physiological and pathological conditions. 
Inspired by a previous study on CAF origin (Arina et al. 
2016), we investigated the relationship between the origin 
of CAFs and HOX gene expression. Understanding whether 
CAFs originate locally or migrate to tumour sites from dis-
tant locations could provide valuable insights. By comparing 
transcriptome profiles of fibroblasts from the face (ectomes-
enchymal origin) and forearm (mesodermal origin), we 
sought to elucidate the differences in HOX gene expression 
postnatally. Our analysis extended to CAFs isolated from 
various tumours (including those from the face and other 
body parts, such as the brain). Gene expression of fibroblasts 
and its relation to their developmental origin may reveal the 
effects of postnatal age and pathological conditions (such as 
cancer) on the HOX gene profile.

Material and methods

Human subjects

Normal fibroblasts and fibroblasts from the pathological 
tissues were collected between 2017 and 2023, with the 
explicit informed consent of all involved donors, and after 
approval of the Ethics Committees of the following Prague 
hospitals: General University Hospital, University Hospi-
tal Královské Vinohrady, University Hospital in Motol, Na 
Homolce Hospital and Central Military University Hos-
pital. We obtained residual tissue samples not needed for 
diagnostic purposes and used them for fibroblast isolation.

A collection of facial dermal fibroblasts (n = 6) was pre-
pared from skin biopsies harvested from the facial skin of 
young adults (aged 20–30 years old). The position was 
standardised in all cases; the biopsy was taken in front of 
the external ear, approximately 2.5 cm ventral from the 
tragus. An identical number (n = 6, age-matched) of skin 
tissue samples was collected from the upper forearm skin 
(radial side, approximately 7.5 cm distal from the flexural 
line). The standardised biopsy sites are presented in the 
schematic figure (Supplementary Fig. 1). Other analysed 
fibroblasts were collected from various body parts, includ-
ing the oral cavity and internal organs, such as the pan-
creas (Table 1). The pathological samples were selected 
to cover various CAFs and skin samples with abnormal 
immune responses, e.g., systemic sclerosis (SSF). SSF is 
known to exhibit unique pathological behaviour, includ-
ing excessive activation and resistance to apoptosis, which 
are features also seen in CAFs. Subgalear fibroblast were 
selected as the best available control for the intracranial 
CAFs. For ethical reasons, we could not collect cells other 
than these cells excised during the approach to the brain 
tumours. Samples originating from regions derived from 
neuroectoderm (face, oral cavity, forebrain) were consid-
ered as ectomesenchymal. Intracranial cells are further 
described in Supplementary Table 1.

The total number of samples derived from normal and 
pathological tissues was 85 and 97, respectively. Tran-
scriptome profiling of these samples was performed using 
either microarrays (70 normal samples and 76 pathologi-
cal samples) or RNA sequencing (RNA-Seq) (17 normal 
samples and 19 pathological samples). The technology 
used for sample profiling is specified in the figure legends.

Fibroblast isolation and characterisation

Fibroblasts from normal and pathological tissues were iso-
lated and characterised as described earlier (Dvořánková 
et al. 2019). In the case of glioblastomas, brain metastases, 
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pharmacoresistant epilepsy and subgalear fibroblasts, 
fibroblasts were isolated by direct magnetic-activated cell 
sorting (MACS) using a fibroblast-specific kit (Fibroblast 
MicroBeads, Miltenyi, Bergisch Gladbach, Germany) 
according to manufacturer’s instructions. The purity of 
the cells was evaluated using a panel of antibodies (Sup-
plementary Table 2), as described previously (Balaziova 
et al. 2021). Fibroblasts were expanded in Dulbecco’s 
modified Eagle’s medium [DMEM with high glucose 
content (4.5 g/L)], supplemented with 10% foetal bovine 
serum (both from Biosera, Nuaille, France) with antibiot-
ics (penicillin 100 IU/mL, streptomycin 100 µg/mL and 
gentamycin 100 µg/mL, all Sigma Aldrich, Prague, Czech 
Republic), and maintained in 5% CO2 atmosphere and 
37 °C in a humidified incubator. Fibroblasts from early 
passages (before passage no. 5) were used to measure the 
cell volume, growth characteristics and transcriptomic 
analyses.

For cell counting and analyses, cells were routinely har-
vested in trypsin (0.25%) and ethylenediaminetetraacetic 
acid (EDTA) (0.02%) solution (Biosera, Nuaille, France) 
and vigorously resuspended in the culture medium. For cell 

counting, the final cell suspension (200 μL) was diluted 1:50 
using Isoton II diluent (Life Sciences, Indianapolis, USA) 
and measured using a Beckman Coulter Particle Counter Z2 
(Life Sciences, Indianapolis, USA) following the manufac-
turer’s protocol. The cells were counted between the lower 
and upper thresholds of 12 and 24 μm, respectively. The 
size distribution measurement of the cell population within 
this range was plotted in 256 identical bins and statistically 
evaluated using a one-way ANOVA test (using GraphPad 
Prism software, version 8.0.1).

For the proliferation assay, 5000 cells were seeded in a 
96-well plate, and the confluence was monitored using an 
IncuCyte S3 live-cell analysis instrument (Sartorius, Goet-
tingen, Germany) every 2 h for 6 days. The normalised data 
curve (normalisation to initial confluence value) was plotted 
using GraphPad Prism. Two biological replicates and six 
technical replicates were used for each group.

For immunocytochemical analysis, we cultured cells from 
12 donors (6 donors of facial fibroblasts and 6 donors of 
matched forearm, leg and trunk fibroblasts, approximately 
20,000 cells/cm2) on sterile microscopic slides for 48 h. 
The cells were fixed in buffered paraformaldehyde (2%) 

Table 1   Source of the fibroblasts according to diagnosis and location

Normal dermal fibroblasts from the trunk and leg were analysed by immunocytochemistry only
* Samples with exactly defined location

Source Abbreviation Number 
of sam-
ples

Number of 
mesoderm 
samples

Number of 
ectomesenchyme 
samples

Normal dermal fibroblasts – face* Face 6 0 6
Normal dermal fibroblasts – forearm/trunk/leg* Forearm/trunk/leg 6/6/6 6/6/6 0
Normal dermal fibroblasts DF 56 25 31
Normal dermal fibroblasts − deep dermis and adipose body of hypodermis AF 4 4 0
Normal fibroblasts from oral mucosa MuF 8 0 8
Normal fibroblasts from the soft tissue between galea aponeurotica and 

calvary periost
Subgalear 5 5 0

Fibroblasts (dermal) from systemic sclerosis SSF 6 6 0
Fibroblasts from epileptogenic focus PRE 3 0 3
Fibroblasts from the pancreas − collected distant from ductal adenocarci-

noma tissue
PANF_control 2 2 0

CAFs from basal cell carcinoma BCCF 23 3 20
CAFs from squamous cell carcinoma SCCF 13 3 10
CAFs from sporadic keratoacanthoma KAF_S 7 7 0
CAFs from BRAF inhibitor-induced keratoacanthoma KAF_I 13 13 0
CAFs from malignant cutaneous melanoma MELF 6 6 0
CAFs from ductal adenocarcinoma of the pancreas PANF 8 8 0
CAFs from glioblastoma GBM 6 0 6
CAFs from breast cancer brain metastasis META 3 Unknown origin Unknown origin
CAFs from lung cancer brain metastasis META 4 Unknown origin Unknown origin
CAFs from spindle cell poorly differentiated sarcoma brain metastasis META 1 Unknown origin Unknown origin
CAFs from primary serous peritoneal carcinoma brain metastasis META 1 Unknown origin Unknown origin
CAFs from a brain metastasis of clear cell renal carcinoma META 1 Unknown origin Unknown origin
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solution (Sigma–Aldrich, Prague, Czech Republic) and sub-
sequently permeabilized by Tris-buffered saline (TBS) with 
0.2% Tween 20 (Sigma–Aldrich, Prague, Czech Republic). 
Endogenous peroxidase was blocked by incubation with 3% 
hydrogen peroxide in TBS at room temperature for 20 min. 
To block non-specific protein binding and dilute primary 
antibodies, we used the Universal IHC Blocking/Diluent 
(Leica, Wetzlar, Germany). The antibodies in 1:100 dilu-
tion were used for fibroblast characterisation (Supplemen-
tary Table 2).

After overnight incubation at 4  °C, the slides were 
washed, and the immunohistochemical reaction was devel-
oped using Histofine® High Stain™ HRP (MULTI) and 
N-Histofine® Simple Stain™ AEC Solution (both Nichirei 
Biosciences Inc, Tokyo, Japan). Slides were counterstained 
in Gill´s haematoxylin and mounted in Biomount Aqua 
(both Baria, Prague, Czech Rep.). Negative controls were 
performed using species-specific isotype control antibod-
ies (Thermo Fisher Scientific, Waltham, MA, USA). The 
bright-field images were acquired using a Leica DM2000 
microscope equipped with LASx software.

Transcriptome profiling by microarrays

Total RNA was isolated using the RNeasy Micro Kit (Qia-
gen, Hilden, Germany) according to the manufacturer’s 
protocol. The quantity and quality of RNA were analysed 
using Agilent 2100 Bioanalyzer (Agilent Technologies, 
Santa Clara, CA, USA). All RNA samples had RNA integ-
rity number (RIN) above 9. Total RNA (200 ng) was ampli-
fied using the Illumina TotalPrep RNA amplification kit 
(Ambion; Thermo Fisher Scientific, Waltham, MA, USA), 
and 750 ng of the amplified RNA was hybridised on Illu-
mina HumanHT–12 v4 chips (Illumina, San Diego, CA, 
USA) following the manufacturer’s protocol.

Raw data were processed using the oligo (Carvalho and 
Irizarry 2010) and limma (Ritchie et al. 2015) packages of 
R/Bioconductor. Data were background corrected using the 
normal–exponential model and quantile normalised. Batch 
effects were corrected using the sva (Leek et al. 2012) pack-
age. Log2-transformed normalised expression data were used 
for heatmap visualisation using the ComplexHeatmap (Gu 
et al. 2016) R package.

Transcriptome profiling by RNA‑Seq

Total RNA was prepared from tissue cultures by the RNe-
asy Micro Kit (Qiagen, Hilden, Germany). RNA qual-
ity was controlled by Agilent 2100 Bioanalyzer, and only 
samples with RIN above 7 were used for further prepara-
tions. Sequencing libraries were prepared from a 1 μg input 
amount of total RNA by a KAPA mRNA HyperPrep Kit, 
including polyA selection and barcoding with a KAPA UDI 

Adapter Kit (all by Roche). An equimolar pool of libraries 
was sequenced by the Illumina NextSeq 500 platform using 
75 nt long single-end reads.

Technical quality control and gene quantification were 
done using the nf-core/rnaseq v3.4 bioinformatics pipeline 
(Ewels et al. 2020) with STAR mapping (Kim et al. 2015) 
and Salmon quantification (Patro et al. 2017). GRCh38 
(ensEMBL assembly version 104) was selected as the ref-
erence genome (Howe et al. 2021). Genes expressed only 
in a single sample were discarded. The DESeq2 (v1.38.3) 
(Love et al. 2014) Bioconductor (v3.16) R package was 
used to identify differentially expressed genes. Significant 
changes in gene expression were defined by a two-fold 
change in gene expression intensity and false discovery rate 
(FDR) < 0.1. Shrunken log-fold change estimates were used 
[adaptive shrinkage estimator (Stephens 2017)]. The gene 
set enrichment analysis (Subramanian et al. 2005) was per-
formed on the Gene Ontology terms (Ashburner et al. 2000; 
Aleksander et al. 2023) using the ClusterProfiler (Wu et al. 
2021) package. Boxplots present log2-transformed quantile 
normalised limma (Ritchie et al. 2015) TPM values from 
Salmon. The boxes display median, upper and lower quar-
tiles, whiskers denote range of values with outliers excluded. 
Heatmaps were created using the ComplexHeatmap (Gu 
et al. 2016) package on standardised quantile-normalised 
TPM values (z-score).

The transcriptomic data sets used in this article are avail-
able in the ArrayExpress database (https://​www.​ebi.​ac.​
uk/​biost​udies/​array​expre​ss) under the accession numbers 
E-MTAB-13241, E-MTAB-13242 and E-MTAB-13243. 
Any additional information required to reanalyse the data 
reported in this paper is available from the corresponding 
authors upon reasonable request.

Results

Comparison of facial fibroblasts 
of ectomesenchymal origin and forearm fibroblasts 
of mesodermal origin

Both types of dermal fibroblasts were large spindle-shaped 
cells usually possessing several processes. Their morphol-
ogy varied according to the population density. However, 
no statistically significant difference in morphology was 
observed across the compared populations. Facial fibro-
blasts were slightly larger; however, the difference was 
not statistically significant (cell diameter, p-value = 0.19) 
(Fig. 1A). The growth kinetics of facial- and limb-origi-
nated fibroblasts were identical (Fig. 1B). According to the 
immunocytochemical analysis, the expression of vimentin 
was approximately the same in both types of fibroblasts 
(Fig.  1C). Conversely, immunocytochemical detection 

https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/biostudies/arrayexpress
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demonstrated that the expression of nestin, α-smooth muscle 
actin (αSMA), S100 protein and CD271 (NGFR) was higher 
in facial- than in forearm-originated fibroblasts (Fig. 1C). 
The expression of proliferation marker Ki-67 was similar 
in both types of fibroblasts. The higher expression of nestin 
and αSMA was also confirmed at the mRNA level (Fig. 1D).

RNA-Seq transcriptome analysis revealed significant 
differences in the transcription profile between ectomesen-
chyme-originated fibroblasts prepared from the face. and 
mesoderm-originated fibroblasts from the upper forearm of 
adult donors, where 959 genes were differentially expressed 
(Fig. 2A). Gene set enrichment analysis showed that Gene 
Ontology terms related to development and morphogenesis 

were the most enriched in differentially expressed genes 
(Fig. 2B). The expression of HOX genes was well marked 
in fibroblasts prepared from the forearm in comparison with 
fibroblasts from the face, as shown in the volcano plot and 
heatmap in Fig. 3. Conversely, the expression of MEIS1 and 
PRDM6 genes was upregulated in facial fibroblasts (Sup-
plementary Fig. 2).

When we focused our interest on genes participating in the 
development of the upper and lower limbs, we detected sig-
nificantly higher activity of the HOXA9, HOXD9, HOXA10, 
HOXD10, HOXA11, HOXD11, HOXA13 and TBX5 genes in 
the forearm fibroblasts (all FDR < 0.001). As expected, the 
activity of the TBX4 gene, which participates in lower limb 

Fig. 1   Measurements of cell volume (A) and growth characteristics 
(B) along with immunocytochemical detection of vimentin, nes-
tin, αSMA, CD271, S100, and Ki67 (C) in adult dermal fibroblasts 
derived from the face and forearm. Expression of the transcripts for 
all studied proteins is also shown (D). Facial fibroblasts were some-
what larger than cells harvested from the dermis of the forearm (A), 
but their growth kinetic was identical (B). [Growth curves were plot-
ted as normalised to the baseline scan confluence value. Error bars 
represent standard deviation (s.d.) calculated from the well repli-
cates (n = 6 technical replicates) for each fibroblast type (face n = 2, 
forearm n = 2 biological replicates); the observed differences were 

not statistically significant.] (C) The expression of vimentin was not 
influenced by fibroblast origin. The expression of nestin and αSMA 
was significantly higher (*p < 0.05) at both mRNA and protein levels 
in facial fibroblasts. Although the positivity for S100A6 protein was 
higher in facial fibroblasts, the transcript level (S100A6) was the same 
in both fibroblast types. CD271 was higher in facial fibroblasts than 
in fibroblasts from the forearm at the protein level, but there was no 
difference at the mRNA level. The type of fibroblasts did not influ-
ence the expression of Ki67. Negative control exhibited no positivity. 
The scale bar indicates 200 μm
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Fig. 2   Heatmap demonstrating the difference between the expres-
sion profiles of dermal fibroblasts prepared from the forearm and face 
(A). Subgalear fibroblasts, presumably also mesoderm-originated, 
are included for comparison. Differences between adult ectomesen-

chyme-originated fibroblasts from the face and mesoderm-originated 
fibroblasts from the forearm reflect the regulatory cascades important 
for morphogenesis and development (B)

Fig. 3   Heatmap of homeobox genes that are differentially expressed 
between dermal fibroblasts prepared from the human face (ectomes-
enchyme) and the forearm (mesoderm) (A). Subgalear fibroblasts are 
included for comparison. The volcano plot (B) demonstrates that the 
homeobox genes are the most upregulated genes in fibroblasts pre-

pared from the forearm. This difference is primarily attributable to 
the absence of activity of HOX genes in facial fibroblasts. Since the 
facial fibroblasts were collected only from female donors, the volcano 
plot also shows a distinct set of Y-linked genes. The HOX gene signal, 
however, does not depend on the donor’s sex
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development, was not upregulated (FDR > 0.9, Fig. 4; Sup-
plementary Fig. 3).

To test the applicability of this gene expression pattern for 
identifying the origin of fibroblasts, we employed a collection 
of fibroblasts isolated from subgalear soft connective tissue. 
These samples (isolated from occipital to parietal regions) pro-
vided cells that exhibited the activity of HOXC5 and HOXC4 
genes, as demonstrated in the heatmap (Fig. 3). Notably, this 
activity of HOX genes strikingly differed from the dermal 
fibroblasts isolated from the viscerocranium and forearm fibro-
blasts, as depicted in Figs. 2 and 3.

Verification of selected HOX proteins 
by immunocytochemistry

Selected proteins, i.e., HOXC6, HOXC8, HOXD10, TBX4 and 
TBX5 were also detected by immunocytochemistry in cultured 
fibroblasts originating from ectomesenchyme (face) and meso-
derm (trunk, forearm and leg). We observed no signal of the 
presence of these proteins in the cell nucleus. The specific pos-
itivity of HOX proteins, in the form of granules, was detected 
in the cytoplasm of all studied types of fibroblasts. It was very 
low in facial cells (ectomesenchyme) and the strongest in the 
trunk (Fig. 5). Concerning the presence of products of TBX4 
and TBX5 genes, the very low signal for TBX4 protein was 
observed only in the cytoplasm of leg-originated fibroblasts, 
and the TBX5 protein signal was stronger in fibroblasts from 
the forearm than in the cells from the leg (Fig. 5), reflecting 
the important role of these proteins in the development of the 
lower and upper limbs, respectively.

Fibroblasts from different pathological tissues 
retain the expression activity of the homeobox 
genes

The HOX gene expression pattern was evaluated in a 
broad collection of CAFs isolated from various primary or 

secondary tumours and several other pathological tissues 
(summarised in Table 1). When the source of tissue was in 
the body areas where fibroblasts are of mesodermal origin, 
fibroblasts prepared from these pathological tissues, includ-
ing CAFs, demonstrated high expression of the HOX genes. 
We also analysed a sample of activated fibroblasts originat-
ing from mesoderm prepared from a patient suffering from 
systemic sclerosis. Similarly to mesoderm-originated nor-
mal dermal fibroblasts and activated CAFs, these SSF cells 
expressed HOX genes (Fig. 6).

Conversely, CAFs from tumours arising in the ectomes-
enchyme-dependent areas were devoid of HOX gene expres-
sion, with scarce exceptions (Fig. 6). A similar trend was 
confirmed in mesenchymal cells isolated from human 
glioblastomas (GBM, malignant primary brain malignant 
tumour) and secondary brain tumours (metastases of various 
cancer types to the brain) (Fig. 7). Of note, fibroblasts pre-
pared from epileptogenic foci in the brain were also devoid 
of HOX gene activity (Fig. 7).

Determination of the effect of sex on homeobox 
gene expression

Next, we decided to determine whether the homeobox code 
depends on the sex of the patients by comparing gene expres-
sion in female and male samples within individual sample 
groups. Only the groups, where each sex was represented 
by at least three samples were selected for the analysis (DF 
from head, DF from body, forearm, BCCF, PANF, META, 
and GBM). KAF_I samples were disregarded owing to pos-
sible influence of the biological treatment. The observed 
significantly differentially expressed homeobox genes are 
presented in Supplementary Table 3. In the normal cells, we 
did not observe any reproducible differences. In the GBM 
group, we noticed changes in several homeobox genes, 
e.g., NKX3-1, HOXA10, PROX1, EN2, DLX1 and HOXB3 
(all FDR < 0.05 and at least fourfold deregulation), which 

Fig. 4   Examples of the HOX genes participating in developing ver-
tebrate limbs and the TBX5 gene controlling the formation of upper 
limbs. The genes displayed significantly stronger expression in fibro-
blasts prepared from the forearm than in fibroblasts prepared from 

facial skin. A negligible activity of TBX4, which is known to be 
important in the development of the lower limb, was observed in both 
facial- and forearm-originated fibroblasts
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were all upregulated in the samples from female patients. In 
PANF, we observed the strongest changes in expression of 
the IRX4 and NKX2-5 genes. As the differences were tissue 
specific, we could not prove any general difference in the 
homeobox gene expression with respect to patient sex.

Discussion

Our study revealed that adult facial dermal fibroblasts, 
originating from the ectomesenchyme, were morphologi-
cally very similar to dermal fibroblasts of mesodermal ori-
gin from the forearm. However, the cells differed in expres-
sion of homeobox genes. Consistent with their origin, adult 
facial fibroblasts exhibited negligible HOX gene activity. 
Conversely, HOX genes were expressed in all adult fibro-
blasts of mesodermal origin (Hahn et al. 2021; Miyoshi 
et  al. 2015). Notably, genes such as HOXA/D9, HOXA/

D10, HOXA/D11 and HOXA13, which participate in limb 
primordium development, were significantly upregulated 
in dermal fibroblasts from the adult forearm. These results 
are supported by murine developmental models (Desanlis 
et al.2020) and studies of HOX gene activity in adult mouse 
limb fibroblasts (Okubo et al. 2018). The TBX4 and TBX5 
genes, which determine upper and lower limb discrimination 
(Duboc and Logan 2011; Duboc et al. 2021), also showed 
distinct patterns, with TBX5 highly active in forearm fibro-
blasts, reflecting their positional memory.

Analysis of the adult dermal fibroblasts from the ectomes-
enchyme and mesoderm exhibited well-conserved transcrip-
tomic programs associated with development, including 
forelimb and occipitotemporal region morphogenesis (Sup-
plementary Fig. 2). Facial fibroblasts of ectomesenchymal 
origin expressed MEIS1 and PRDM6 more actively than 
mesodermal-origin fibroblasts. MEIS1’s roles include neural 
crest development, regulation of cell proliferation, stemness 

Fig. 5   Immunocytochemical 
detection of HOXC6, HOXC8, 
HOXD10, TBX4 and TBX5 in 
normal dermal fibroblasts pre-
pared from the face (ectomes-
enchyme), trunk, forearm and 
leg (all mesoderm). Nuclear 
positivity was detected in none 
of the fibroblast types. The 
lowest cytoplasmic granular 
signal was present in facial cells 
(blue frames), and the strongest 
HOXC6, HOXC8 and HOXD10 
signals in the cells prepared 
from the trunk (red frames). 
The positivity for TBX4 was 
extremely low, yet the cells 
from the lower limb (red frame) 
displayed a clear signal. The 
highest signal for TBX5 was 
observed in fibroblasts from the 
forearm (red frame). A char-
acteristic cell from the marked 
position of the panels with the 
lowest and strongest signals is 
detailed in the insets. Negative 
control (NC) was included to 
show the specificity of the reac-
tion. The scale bar represents 
200 μm
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and differentiation (Aksoz et al. 2017; Maeda et al. 2001; 
Jiang et al. 2021; Blasi and Bruckmann 2021). The function 
of the PRDM6 gene is associated with neural crest cell func-
tion and heart development (Hong et al. 2022). The detection 
of these genes in facial fibroblasts reflects their developmen-
tal origin and supports the idea that HOX gene expression 
correlates with location. Using a consistent control, col-
lected from healthy donors, we explored the potential role of 
the positional HOX-coded signature in various pathologies. 
Our data confirm the conservation of the HOX code in nor-
mal and cancer-associated fibroblasts (CAFs) isolated from 
a broad panel of tissues and cancer types in adults, including 
skin, oral mucosa, skin cancers (basal cell carcinoma, squa-
mous cell carcinoma, melanoma), non-tumorous pancreatic 
tissue from patients with pancreatic cancer, pancreatic ductal 
adenocarcinoma, brain tissue and malignant brain tumours 
(glioblastoma and brain metastases).

The origin of CAFs has been a long-standing topic in can-
cer biology (Orimo and Weinberg 2006). Suggested source 
populations include resident fibroblasts, myofibroblasts, 
pericytes, preadipocytes, smooth muscle cells, mesenchy-
mal stem cells (MSCs), and bone marrow-derived progenitor 
cells (BM-MSCs) (Karnoub 2007; Li et al. 2021). A broad 
comparison of BM-MSCs from different body parts revealed 
that most BM-MSCs express HOX genes, with specific sets 

varying by anatomical origin (Picchi et al. 2013). These 
HOX codes, characteristic of MSCs, are maintained during 
differentiation, indicating an intrinsic property (Ackema and 
Charité, 2008). Clinically relevant BM-MSCs typically show 
increased expression of HOXA9, HOXA10, HOXB4, HOXB7, 
HOXC8, HOXC10 and HOXD8 (Coenen et al. 2015). The 
positional memory of MSCs is evidenced by the mainte-
nance of HOX code expression in culture (Wagner et al. 
2006). In our dataset (Fig. 6), the listed HOX genes were 
not highly expressed in CAFs from intracranial metastases, 
suggesting that BM-MSCs are unlikely to be the primary 
source of these stromal cells. However, this does not exclude 
their regulatory role in brain metastases. From this point of 
view, our data generally suggest that local cells predomi-
nantly serve as the source of CAFs in almost all samples 
evaluated, with only a few exceptions to this principle.

One particularly intriguing group worthy of closer 
attention is fibroblasts isolated from glioblastoma sam-
ples. In several CAF samples derived from these highly 
malignant brain tumours, we observed a variable number 
of HOX genes expressed at varying intensities (Fig. 7). 
This was in stark contrast to control samples from phar-
macoresistant epilepsy foci, where HOX gene transcription 
was generally silent, as expected, owing to their ectomes-
enchymal origin. Interestingly, subgalear fibroblasts from 

Fig. 6   The expression profile of HOX genes in fibroblasts prepared from different pathological tissues, including CAFs, respects the mesodermal 
or ectomesenchymal origin of the cells. See Table 1 for abbreviations
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very proximal positions on the outer side of cranial bones 
expressed a panel of HOX genes with prominent intensity, 
aligning with the expected mesodermal development of the 
parieto-occipital region (Carlson 2018). Notably, the HOX 
gene transcriptional profile in GBM CAFs was mostly 
non-overlapping with subgalear fibroblasts, suggesting a 
distant origin of CAFs in GBM, possibly including mesen-
chymal stem cells or circulating fibrocytes of mesodermal 
origin (Lacina et al. 2022; Busek et al. 2016). Another 
potential source of CAFs in GBM is vascular wall-derived 
MSCs (VW-MSCs), located within the vascular stem 
cell niche or vasculogenic zone of the blood vessel wall. 
These MSCs are characterized by increased expression 
levels of HOXB7, HOXC6, HOXC8 and several other HOX 
genes (Klein et al. 2013). In one case, the glioblastoma 
was later rediagnosed as gliosarcoma, and thus, the HOX 
gene expression may stem from contamination of CAFs 
by tumour mesenchymal cells. Our findings suggest that, 
at least in some patients, distant migrating populations 
can be a potential source of CAFs in GBM. This further 

highlights the HOX code as a master regulator of cellular 
identity (Klein 2021).

Linking cancer with long-standing inflammatory condi-
tions presents numerous clinically relevant aspects (Lacina 
et al. 2019). The regulators of immunity and inflamma-
tion, such as epigenetic modifications (Rath et al. 2022), 
may lead to aberrant promoter methylation of various genes 
(Jurdziński et al. 2020) and dysregulation of their expression 
activity. To explore whether such dysregulation occurs in 
the HOX genes, dermal fibroblasts from patients suffering 
from systemic sclerosis (SSF) were included in our analy-
sis. Data on fibroblasts are limited, but in the context of 
CAF biology, activated synovial fibroblasts from patients 
with autoimmune joint damage produce factors according to 
joint position reflected in their HOX code (Frank-Bertoncelj 
et al. 2017). These factors influence the clinical status of 
arthritis. In this context, robust data suggest that HOX gene 
expression or dysregulation influences cancer cell proper-
ties, with clear clinical relevance (Belpaire et al. 2022; Mor-
gan et al. 2022; Wang et al. 2022). Both cancer-inhibiting 

Fig. 7   CAFs prepared from human glioblastoma (GBM) samples and 
brain metastases of malignant tumours (META) exhibited negligible 
activity of the HOX genes. Similarly, fibroblasts from the epilepto-
genic foci of the brain (PRE) exhibit no activity of HOX genes, in 

contrast to fibroblasts prepared from the subgalear soft tissue cover-
ing the dorsal part of the skull. The sample NCH353G, denoted by 
an asterisk, was later rediagnosed and may contain tumour-originated 
mesenchymal cells
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and cancer-supporting roles have been reported. It remains 
unclear how the absence or expression of the HOX genes 
might affect cancer progression, as observed in leukaemia 
and solid tumours (Awgulewitsch 2003; Feng et al. 2021; Xu 
et al. 2022). Despite extensive data on HOX gene expression 
in cancer cells, information on their expression in CAFs, 
and their disease significance, remains limited (Wang et al. 
2020).

Our study provides valuable insights into the HOX signa-
ture in fibroblasts of different embryonic origins but has cer-
tain limitations and characteristics of a pilot study. The anal-
ysis was conducted on fibroblasts isolated from normal skin 
and tumours and from patients with systemic sclerosis, cul-
tured from the second to fifth passage. While the uniformity 
of results supports the conclusions, the artificial conditions 
of in vitro cell culture present some limitations. We quan-
tified HOX gene expression in three primary cell lines of 
BCCF and melanoma. The results of this limited experiment 
suggested that the expression does not depend on cultivation 
time (4–24 weeks) or on cultivation conditions (Petri dish 
versus xenografts) (data not shown). Although our study 
includes a relatively large collection of solid tumours with 
uniform results, the number of samples for each diagnosis is 
relatively small, limiting the generalizability of our findings. 
Gene expression was verified in only a few representative 
samples at the protein level. This highlights the necessity 
for future studies to include comprehensive protein valida-
tion. In addition, single-cell sequencing would be essential 
to determine the heterogeneity of CAFs within individual 
tumours, allowing for a comparison of HOX gene expression 
with the activity of other genes. We did not detect any gen-
eral changes in homeobox gene expression between sexes. 
However, we observed changes in their expression between 
female and male patients suffering from glioblastoma or 
pancreatic carcinoma. These topics will represent the next 
steps in our research.

From a practical standpoint, our data highlight the critical 
importance of considering the embryonic origins of fibro-
blasts in biomedical research. The specificity of the ectomes-
enchyme-based cancer microenvironment, often overlooked, 
is crucial for accurate experimental outcomes. Proper fibro-
blast controls are essential and mixing fibroblasts of different 
origins (ectomesenchyme versus mesoderm) is incorrect and 
can lead to misleading results. Neglecting the developmental 
origin of fibroblasts can lead to misinterpreted data, even 
with advanced ‘omics’ methods. Considering their origin is 
crucial for the validity and applicability of research findings 
in cancer biology and regenerative medicine.
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