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� Short segment of iEEG can achieve similar results in localization of the epileptogenic zone as a model based on long recordings.
� Random selection of short iEEG segments may give rise to inaccurate results.
� It is important that the analyzed segment is carefully and systematically selected, preferably from NREM sleep.
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Objective: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models
open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict
their analysis to short segments of intracranial EEG (iEEG).
Methods: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments
across various interictal conditions. Then, we tested machine learning models for EZ localization using
iEEG features calculated within these individual segments or across them and evaluated the performance
by the area under the precision-recall curve (PRAUC).
Results: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062).
However, the PRAUC varied significantly across the segments (0.323–0.493). Overall, NREM sleep
achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments,
the model performed significantly better than single segments, except NREM sleep segments.
Conclusions: The model based on a short segment of iEEG recording can achieve similar results as a model
based on prolonged recordings. The analyzed segment should, however, be carefully and systematically
selected, preferably from NREM sleep.
Significance: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.

� 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction surgery, precise localization of the epileptogenic zone (EZ) is crucial.
Resective epilepsy surgery is the therapy of choice in patients with
focal drug-resistant epilepsy (Jobst and Cascino, 2015). In epilepsy
The current gold standard for EZ identification in more complex cases
is the seizure-onset zone (SOZ) that is approximated from the ictal
intracranial electroencephalogram (iEEG) (Thomschewski et al.,
2019). Unfortunately, this approach leads to seizure freedom in only
40–50% of well selected candidates, and takes on average 1–2 weeks
of recording and evaluation (Krucoff et al., 2017).
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The most promising new markers of the EZ, which are derived
from interictal iEEG recordings, are interictal epileptic discharges
(IEDs) with gamma activity (Ren et al., 2015; Thomas et al., 2022),
high-frequency oscillations (HFOs) (Frauscher et al., 2017; Jacobs
et al., 2018; Sarnthein et al., 2021), and more recently relative
entropy (Travnicek et al., 2023) as well as other connectivity met-
rics and various combinations of these iEEG features in machine
learning models (Cimbalnik et al., 2019; Klimes et al., 2016;
Lagarde et al., 2018; van Mierlo et al., 2014). We demonstrated that
a combination of these features outperformed models based on a
single feature and that using short segments of iEEG recordings
across different states of vigilance achieved the best scores in
non-rapid eye movement (NREM) sleep (Klimes et al., 2019).

The influence of circadian and sleep cycles on interictal and ictal
activity in epilepsy has been known for decades (Bercel, 1964;
Karoly et al., 2021). The latest results suggest, that variations
across the sleep-wake cycle in long recordings are not negligible,
when assessing markers of the EZ. For example, the study by Spen-
cer et al. shows that epileptiform activity has a strong 24 h period-
icity and varies depending on the localization of the SOZ (Spencer
et al., 2016). Baud et al. demonstrated that the phase information
from circadian and multidien interictal epileptiform activity
rhythms is a novel biomarker for determining relative seizure risk
(Baud et al., 2018). Gliske et al. shows that HFO interpretation
requires the analysis of prolonged recordings rather than isolated
review of short data segments (Gliske et al., 2018). And finally, in
our last paper, we provided evidence that epilepsy surgery out-
come depends on strong and single sources of IEDs which are rel-
atively stable over an at least 18-hour long period (Klimes et al.,
2022). All these studies discourage us from using randomly
selected short segments of EEG. However, the potential benefit of
EEG feature variance over prolonged periods of time in machine
learning models has not been systematically investigated.

In this study, we processed 2381 hours of iEEG data obtained
from 25 patients with good postsurgical outcome and tested differ-
ent iEEG features, feature selection strategies and machine learn-
ing models for interictal EZ localization in multiple, individually-
selected 5-minute long segments across different sleep stages
and interictal conditions. Then, we created a set of new features,
calculated as the average and variance of iEEG features over a pro-
longed period, and tested whether these ‘‘variance features” out-
perform models based on features from single segments. We
hypothesized that (i) the score of the models based on 5-minute
segments varies across different segments; (ii) the model based
on average and variance of iEEG features achieves a better score
than a model based on average or variance alone; and that (iii)
the model based on a well-selected 5-minute long segment, such
as 5-minutes of NREM sleep, can achieve the same result as the
model based on the data obtained from � 24-hour recordings.
2. Methods

2.1. Patients

We analyzed all consecutive adult patients with drug-resistant
focal epilepsy who underwent stereo-electroencephalography
(SEEG) and subsequent resective surgery with a good post-
surgical outcome (Engel I (Engel, 1993)) after a minimum follow-
up period of � 1 year at the Montreal Neurological Institute &
Hospital (MNI) between 1/2010 and 12/2015 and at the St. Anne’s
University Hospital in Brno (SAUH) between 4/2017 and 10/2019.
The patients undergoing SEEG prior to this period did not have
additional scalp EEG with subdermal thin wire electrodes required
for sleep staging. Inclusion criteria were: (a) high-resolution 3D
magnetic resonance imaging (MRI) datasets; (b) availability
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of � 24 hours of continuous SEEG recording; and (c) scalp EEG,
electro-oculography, and electromyography or video for sleep
scoring. The study was approved by the MNI and SAUH Ethics
Review Board. All patients granted written informed consent.

2.2. Recordings

Standard clinical SEEG depth electrodes were inserted stereo-
tactically using an image-guided system. SEEG was recorded at
2 kHz (MNI) and 5 kHz (SAUH). An average from all SEEG contacts
with a confirmed location in brain structures was used as an SEEG
reference signal. The white matter was not excluded from the anal-
ysis. Scalp EEG was obtained with subdermal thin wire electrodes
(MNI) or scalp electrodes (SAUH) at F3, Fz, F4, C3, Cz, C4, P3, Pz, and
P4 (Ives, 2005).

2.3. Data selection and pre-processing

For every patient, we selected the first 1–3 available days of
continuous SEEG, ignoring 1 hour before and 1 hour after epileptic
seizures. Electrode contact localization was determined according
to methodology described by Frauscher et al. (Frauscher et al.,
2018). The seizure-onset zone contacts were identified based on
the earliest ictal changes at seizure onset irrespective of the fast
activity content (Spanedda et al., 1997). Sleep was scored visually
in 30 second epochs (Berry et al., 2017; Ives, 2005).

2.4. Segment selection

For every patient, we selected 16 different, 5-minute long seg-
ments of SEEG, detailed in Table 1. For the different states of vigi-
lance, 5 minutes of continuous states were preselected. If not
available, 5 minutes with at least 80% (4 minutes) of the defined
state were selected. Every segment was carefully visually inspected
for artefacts and excessively large IEDs which could affect the com-
mon reference signal. In case of Wake, NREM and random seg-
ments, we selected three different segments per state. We were
not able to select more than three random, artefact-free segments
for each patient, because two patients in the dataset had disturbed
sleep by nocturnal awakenings or seizures which reduced the
number of segments. In case of fragmented sleep, we were able
to select only one random segment per patient.

2.5. Calculation of minimum and maximum IED rate segments

IEDs were detected using a validated detector on all SEEG chan-
nels irrespective of cortical or gray matter localization (Janca et al.,
2015). To reduce false-positive detections caused by alpha rhythm
or spindles, the algorithm was modified to ignore all detected
events separated from each other by less than 300 msec. To reduce
detections caused by artefacts, all detected events which appeared
at the same time in � 50% of SEEG signals were ignored (Klimes
et al., 2022). A random sample of final detections was visually
cross-checked for plausibility by a neurophysiologist. Further, we
verified that the ranking of the top 20% of IED channels per patient
corresponded to the localization of IEDs as per SEEG report.

Each recording was divided into 5-minute long segments with
no overlap. For each segment, the average IED rate across all SEEG
channels was calculated. The minimum and maximum values of
IED rates were defined as the 5th and 95th percentiles from the
whole distribution.

2.6. Calculation of minimum entropy segments

Each recording was divided into 5-minute long segments with
no overlap. In every segment, IED rates for individual SEEG



Table 1
Selected time segments of stereo-electroencephalography (SEEG) recording. Legend: REM = rapid eye movement; NREM = non rapid eye movement; IED = interictal epileptic
discharges.

Segment name Definition Number of analyzed segments

Random Random interictal segment 3
Random Wake Random interictal segment during Wake period 3
Random NREM Random interictal segment during either NREM N2 or N3 sleep 3
Random N2 Random interictal segment during NREM N2 sleep 1
Random N3 Random interictal segment during NREM N3 sleep 1
Random REM Random interictal segment during REM sleep 1

1st 5 minutes of N2 The first 5 minutes of interictal N2 sleep during the first night of the recording 1
Maximum IED rate1 Interictal segment with maximum IED rate, without any other pre-selection 1
Minimum IED rate1 Interictal segment with minimum IED rate, without any other pre-selection 1
Minimum entropy2 Interictal segment with minimum entropy, without any other pre-selection 1

1 Detailed definition in ‘‘Calculation of minimum and maximum IED rate segments”.
2 Detailed definition in ‘‘Calculation of minimum entropy segments”.
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contacts were calculated and aligned by their anatomical location
(agnostic to inter-electrode distance/electrode coordinates), result-
ing in an IED spatial distribution (Klimes et al., 2022). Then, the IED
rates across SEEG contacts were normalized in the range of <0,1>,
and the entropy of the IED distribution was calculated as: -sum

((x*log2(x))/log2(n)), where x is the normalized IED spatial
distribution and n is the number of SEEG contacts. The minimum
entropy value, representing the segment with the most distinctive
and localized peak of elevated IED rates in IED spatial distribution
(Klimes et al., 2022), was defined as the 5th percentile from the
whole distribution. Please note that the IED rates were normalized
in the range of <0,1> just for computation of the entropy. For fur-
ther analysis, not normalized rates were used.
2.7. Feature calculation

Multiple univariate, bivariate and event-related EEG features
were calculated for each SEEG contact (or pair of SEEG contacts)
in every 5-minute segment separately using our open-source
python library EPYCOM (Cimbalnik and SweetVlad, 2020), as pre-
viously used in (Cimbalnik et al., 2019; Klimes et al., 2019). In case
of univariate features, the features were calculated for a single
SEEG contact. The univariate features were: spectral power, power
spectral entropy, phase-amplitude coupling, frequency-amplitude
coupling, low-frequency ratio, Hjorth complexity, phase syn-
chrony, phase consistency, and phase lag index. In the case of
bivariate features, the features were calculated between adjacent
SEEG contacts on the same depth electrode. The bivariate features
were: linear correlation, coherence, and relative entropy. The fea-
tures were calculated in the following frequency bands: delta (1–
4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–20 Hz), gamma
(20–45 Hz), high-gamma (65–80 Hz), ripples (80–250 Hz), fast-
ripples (250–600 Hz) and for the raw unfiltered recordings (1–
500 Hz for MNI, 1–1200 Hz for SAUH). Event-related features were
calculated for single SEEG contacts, namely IED rates (already
detected by Janca et al. detector (Janca et al., 2015)), high-
frequency oscillations rates in ripple (80–250 Hz), and fast-ripple
(250–500 Hz) bands. High-frequency oscillations were detected
by the validated detector by von Ellenrieder et al. (von
Ellenrieder et al., 2016, 2012). Furthermore, for each patient, we
calculated the average and variance of each feature across all
5-minute segments.
2.8. Feature selection

We conducted four different comparisons of models trained
with (i) single-segment features, (ii) average of features across all
segments (AVG), (iii) variance of features across all segments
(VAR), and (iv) average and variance of features across all segments
3

(VAR_AVG). We decided to run all four comparisons so that our
results would be complete, exhaustive and leave no ambiguity.
Each comparison required respective feature selection from appro-
priate sets.

To identify the best possible features, we utilized three of the
most explainable feature-selection methods, namely Logistic
Regression (LR) which achieves the best fit by adjusting the deci-
sion threshold, support vector regression (SVR) which minimizes
the difference between the observed value and the estimated
value, and ElasticNet (EN) which creates a simpler and more gen-
eric model by adding penalties for making it too specific. Ulti-
mately, each function will eliminate those features that do not
contribute to the prediction significantly. We adjusted the hyper-
parameters of all three models using RandomizedSearchCV to
achieve the best-performing features for each.

In the next step, we selected the best features using Recursive
Feature Elimination Cross-Validation (RFECV) and the previously
prepared models. RFECV function created subsets of the best-
performing features by repetitively removing the least relevant
ones to the model. Then, based on the cross-validation score, it
chooses the best group. All functions and models in further analy-
sis are implemented with usage of the scikit-learn library
(Pedregosa et al., 2011).
2.9. Training and validation of the models

Calculated features were further used in machine learning mod-
els for localization of the EZ, defined as resected SOZ contacts in
patients with a good post-surgical outcome. We tested two robust
and fully explainable algorithms: the Support Vector Classifier
(SVC) and Logistic Regression. This step required training of 114
models in total (2 classification models ✕ 3 feature selection mod-
els ✕ 19 segments (16 for single-segment and one each for AVG,
VAR, and VAR_AVG). We used a RandomizedSearchCV for hyperpa-
rameter tuning and Precision-Recall Area Under the Curve (PRAUC)
as an evaluation metric. PRAUC was chosen over the F1-score, since
it was shown to be more informative in imbalanced datasets
(Powers and Ailab, 2011; Saito and Rehmsmeier, 2015). Each
model was cross-validated using the leave-one-patient-out
approach. We determined the baseline result for PRAUC by calcu-
lating the ratio of positive (P, n=165) and negative (N, n=2508)
cases as baseline=P/(P+N). For the purpose of the evaluation
of the feature importance, we used coefficients of each model nor-
malized between �1 (the least useful) and 1 (the most useful).
2.10. Statistical analysis of the results

To confirm the hypothesis, that the performance of individual
segments is not stable, we compared results achieved by individual
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segment models with each other. To test our second hypothesis,
that the combination of average and variance of iEEG features
achieves a better score than a simple average or variance, we com-
pared models trained only on AVG, VAR, or VAR_AVG features. For
the third hypothesis, that a well-selected short recording segment
might be sufficient to predict the EZ, we chose the best performing
VAR_AVG model and compared it with single-segment models.

For the purpose of the evaluation, we defined True Positives
(TP) as electrode contacts marked by a model as a target which
were SOZ and resected; False Positives (FP) as electrode contacts
marked as target which were not SOZ and resected; True Negatives
(TN) as electrode contacts not marked as target which were not
SOZ and resected; and False Negatives (FN) as electrode contacts
not marked as target which were SOZ and resected. We used the
PRAUC metric for all the comparisons and checked if the differ-
ences were statistically significant using the Hanley & McNeil test
(Hanley and Mcneil, 1982). We used Bonferroni multiple-
comparison correction to minimize Type 1 error. Statistically signif-
icant (<0.05) and highly statistically significant (<0.001) p-values
after correction for 16 comparisons equal 0.003 and 0.0000625
respectively. The code used for analysis is publicly available
(Chybowski, 2023).
3. Results

3.1. Patient demographic characteristics

In the study periods at both sites, a total of 50 patients (42% of
total patients undergoing surgery after SEEG) achieved a good sur-
gical outcome (Engel 1). Twenty-five of these patients were
excluded because they had missing scalp EEG, electro-
oculography, and electromyography or video as needed for sleep
scoring (N = 11); missing high-resolution imaging for electrode
co-registration (N = 9); or less than 24 hours of continuous record-
ing available for this analysis (N = 5). The final patient cohort con-
sisted of 25 consecutive patients fulfilling the selection criteria
(Brno = 8, Montreal = 17). They consisted of 11 females with a
median (IQR) age of 28 (13.5) years. A total of 24% had temporal
epilepsy; 76% were lesional cases. The two most frequent patholo-
gies were focal cortical dysplasia (60%) and gliosis (16%). For fur-
ther information please see Supplementary Table S1.
3.2. Selected segments

Fig. 1 shows times of selected segments in circular plots. Ran-
dom and minimum entropy segments do not show any distinct
distribution pattern. Randomwake segments were selected mostly
from 6AM to 9PM. The first 5 minutes of N2 were selected in the
beginning of a night, around 9PM. NREM sleep segments from
9PM to 3AM and REM sleep from midnight to 4AM. Maximum
IED segments were selected mostly from 9PM to 5AM with a clear
preference in the first half of the night. The minimum IED segment
was selected predominantly between 5-6AM which might corre-
spond to the last REM sleep cycle.
3.3. Comparison of the models based on individual segments

Fig. 2 shows the comparison of the performance of the individ-
ual segments. Sleep segments exhibit statistically significant differ-
ences compared to the baseline (i.e., the outcome obtained by
chance and used as a reference point has a PRAUC of 0.062). The
best PRAUC results for individual segments with an average result
of 0.423 are presented on the bar plot.
4

3.4. Comparison of the models based on data from all segments

Fig. 3 presents the performance of models trained on average
(AVG), variance (VAR), and average and variance (VAR_AVG) fea-
tures. For both SVC and Logistic Regression, the VAR_AVG model
is significantly better than the AVG and VAR model. SVC model
exhibits slightly higher score in all three variants compared to
Logistic Regression and therefore we decided to use this model in
our further investigation.

3.5. Comparison of single segment model and AVG_VAR model

Fig. 4 shows the comparison between the result of the SVC
model obtained with VAR_AVG features and the results of SVC sin-
gle segment models. Overall, the VAR_AVG model achieved better
scores than models based on short segments. However, this was
true in only 12 out of 16 segments (75%). Among the single seg-
ment models, the NREM segments achieved the best scores, which
were not statistically different to the VAR_AVG model (all
ps > 0.05), except random NREM #1 (p = 0.011). The results are
presented in Table 2.

The most important features positively correlated with the
pathology of the VAR_AVG model were: Phase synchronization in
Theta, Beta, Gamma, and High Gamma bands, Coherence in Theta,
Gamma, High Gamma, and Ripple band, Spike rate, Power in
Gamma band, Median linear correlation in Ripple band, and HFO
rates in the Ripple band. In case of the single-segment models,
the most important features varied between segments. For further
information please see Supplementary Tables S2 and S3 and Sup-
plementary Figure S1.
4. Discussion

In this study, we analyzed 25 consecutive adult patients with
drug-resistant focal epilepsy from the Montreal Neurological Insti-
tute and the St. Anne’s University Hospital in Brno, who underwent
SEEG with subsequent resective surgery resulting in good post-
surgical outcome. We processed 2381 hours of SEEG recordings,
calculated multiple EEG features and showed that (i) the score of
the models based on short segments varies significantly across var-
ious sleep stages and interictal conditions introducing uncertainty
for identifying the EZ; (ii) the model based on the combined aver-
age and variance of iEEG features across segments is significantly
better than the model based on variance or average alone; and
(iii) the model based on a well-selected 5-minute long segment
such as NREM N2 and N3 can achieve the same result as the model
based on the prolonged recording.

4.1. Short recordings vary in their ability to identify the EZ

In this study, we evaluated short EEG segments across different
sleep stages and interictal conditions. The average score across dif-
ferent 5-minute segments was 0.423, which is an acceptable result
considering the average PRAUC baseline of 0.062. Nevertheless,
one should be extremely careful when selecting short segments
of data for analysis. Based on our results, the PRAUC varied
between 0.323–0.493 across different segments, suggesting that
when selecting a short segment of SEEG, one can get lucky or very
unlucky. These results are new but not unexpected considering the
significant influence of circadian and sleep cycles on interictal and
ictal activity in epilepsy (Bercel, 1964; Gliske et al., 2018; Karoly
et al., 2021). It is well described, that circadian rhythms influence
the timing of seizures, with seizures occurring most frequently in
the morning hours, while sleep cycles can influence both the fre-
quency and intensity of seizures (Spencer et al., 2016). Further-



Fig. 1. Times of selected segments across all patients. The circular graphs show 24 h period with midnight at 0 h and midday at 12 h. The number of selected segments were
counted in 1-hour bins.
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Fig. 2. Comparison of single-segment Area Under the Precision-Recall Curve (PRAUC) values for the Support Vector Classifier (SVC) model. The asterisks indicate statistically
significant * (<0.05) and highly statistically significant ** (<0.001) results. The dashed line indicates the average result for single segment predictions.

Fig. 3. Comparison of the Area Under the Precision-Recall Curve (PRAUC) values of Logistic Regression (LR) and Support Vector Classifier (SVC) models using average (AVG),
variance (VAR), and both variance and average (VAR_AVG) features. The asterisks indicate statistically significant * (<0.05) differences. The p-value equals 0.01 and 0.001
when the LR VAR_AVG model is compared to AVG and VAR models respectively. In the case of the SVC model, p-values equal 0.04 and 0.003 for AVG and VAR respectively.
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Fig. 4. Comparison of a single segment and variance and average (VAR_AVG) models. The asterisks indicate a statistically significant difference * (<0.05), ** (<0.001) between
the single segment and the VAR_AVG model. The dashed line indicates the average result for single segment predictions.

Table 2
Statistical comparison of the Area Under the Precision-Recall Curve (PRAUC) between variance and average (VAR_AVG) model and single segment models. Highlighted p-values
show statistically (bold) and strongly statistically (bold italic) significant difference. Legend: REM = rapid eye movement; NREM = non rapid eye movement; IED = interictal
epileptic discharge.

Segment PRAUC A
(VAR_AVG)

PRAUC B
(single segment)

standard
error A

standard
error B

difference:
areaA - areaB

standard error of
the difference

Z P-value: directional
(one-tailed)

random wake #1 0.521 0.358 0.024 0.020 0.163 0.031 5.274 <0.001
random wake #2 0.521 0.403 0.024 0.021 0.118 0.032 3.726 <0.001
random wake #3 0.521 0.381 0.024 0.021 0.140 0.031 4.463 <0.001

random N3 0.521 0.480 0.024 0.023 0.040 0.033 1.226 0.220
min entropy norm 0.521 0.422 0.024 0.022 0.099 0.032 3.080 0.002

random #1 0.521 0.415 0.024 0.022 0.106 0.032 3.310 0.001
random #2 0.521 0.414 0.024 0.022 0.107 0.032 3.342 0.001
random #3 0.521 0.324 0.024 0.019 0.197 0.030 6.525 <0.001
random N2 0.521 0.493 0.024 0.023 0.027 0.033 0.830 0.407
max IED rate 0.521 0.443 0.024 0.022 0.078 0.032 2.409 0.016
min IED rate 0.521 0.421 0.024 0.022 0.100 0.032 3.114 0.002

1st 5 minutes of N2 0.521 0.396 0.024 0.021 0.125 0.032 3.951 <0.001
random NREM #1 0.521 0.439 0.024 0.022 0.082 0.032 2.538 0.011
random NREM #2 0.521 0.474 0.024 0.023 0.046 0.033 1.418 0.156
random NREM #3 0.521 0.481 0.024 0.023 0.039 0.033 1.196 0.232

random REM 0.521 0.389 0.024 0.021 0.132 0.032 4.194 <0.001
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more, a recent study found that IED spatial distribution fluctuated
significantly over time, and a median of 12 sequential hours was
required to capture 80% of this variability (Conrad et al., 2020).
In our latest work, we showed that a minimum of 18 hours of con-
tinuous recording is needed for correct outcome prediction (Klimes
et al., 2022). The above-mentioned studies are comprehensively
describing the fluctuations in interictal activity. However, the vari-
ance of different EEG features in machine learning models
designed for EZ localization over prolonged periods of time has
not been systematically investigated, and this is the first study
showing that combining average and variance features achieve
the best performance.

4.2. Well selected short recordings have a similar value to identify the
EZ as long recordings

Another finding of this paper is that albeit on average, short seg-
ments performed worse than long recordings, we found that NREM
sleep periods had a similar value to identify the EZ as long record-
7

ings. This finding is in agreement with previous studies, that when
selecting a short segment for automatic EZ localization, the NREM
sleep stage is expected to provide the most accurate results
(Bagshaw et al., 2009; Clemens et al., 2007; von Ellenrieder et al.,
2017; Klimes et al., 2019; Sammaritano et al., 1991; Staba et al.,
2004). However, to be on the safe side, the utilization of long
recordings seems to be more reliable. Unfortunately, prolonged
recordings are not always available, and even when they are, the
processing times are considerably longer. Most retrospective stud-
ies, therefore select rather short segments of EEG. Given the results
presented in this paper, the short segment strategy does not have
to be always inferior. As long as the segment selection is not done
randomly, but rather systematically, the probability of getting
unreliable result is minimized.

4.3. Times of selected segments

Inspecting the circular graphs in Fig. 1, it is apparent that the
random segments were evenly distributed around the clock except



B. Chybowski, P. Klimes, J. Cimbalnik et al. Clinical Neurophysiology 161 (2024) 1–9
for a peak around 6AM, which could be explained by the fact that
patients around this time are usually well recorded as they are part
of the night before patients often get disconnected for their morn-
ing routine. More distinct patterns were visible in timing of seg-
ments with maximum and minimum IED rate, which were
distributed mainly from 9PM to 5AM and 5 to 6AM respectively
as expected from previous studies (Conrad et al., 2023, 2020;
Sammaritano et al., 1991). NREM sleep segments were picked
mainly from night, but in some patients, few segments happened
to be selected during the day time, suggesting that day time naps
might be enough to record desired NREM activity for accurate EZ
localization. This was however not the aim of this study and would
require confirmation in further studies.

4.4. Considering the variance of EEG features is useful in long
recordings

As a part of this study, we investigated the potential benefit of
longer recordings and iEEG feature variance over time. The model
based solely on the variance of features, calculated from at least
24-hour long segment achieved a score of 0.424, and the model
based on average features achieved a score of 0.453. However, a
significantly better result was achieved, when combining average
and variance of features, reaching a score of 0.521. This clearly
shows that the model based on the combination of average and
variance achieves the best score in comparison to a model based
on just variance or just average. The analysis of the features’
importance shows that the variance and average of spike rate,
HFO, coherence and phase synchrony in different frequency bands
appear to contribute the most. The basic version (not variance or
average) of features from VAR_AVG model are among the most
contributing ones in the single segment models. This novel
approach is not frequently used albeit tempting when aiming to
analyze features that are known to have variability over time
(Chen et al., 2021; Gliske et al., 2018). This is also in line with
our previous work on the analysis of IED dynamics that showed
that surgery outcome depends on strong, single and stable sources,
where variance was one useful measure in the prediction model
(Chybowski, 2023).

4.5. Selection of the PRAUC and not standard AUC

We decided to utilize the PRAUC instead of standard AUC as an
evaluation metric. Large numbers of previous studies, including
our past work, uses area under the receiver operating characteris-
tics (ROC), as we refer to it as standard AUC (Abdallah et al., 2022;
Cimbalnik et al., 2019; Klimes et al., 2016; Li et al., 2016; Murphy
et al., 2017; Weiss et al., 2015). However, given the class imbalance
inherent to our type of datasets with significantly lower number of
channels inside than outside the EZ, we decided to use a metric
that is the most informative and suitable for binary classification
in datasets with such a distribution, focusing on pathology predic-
tion. Unlike ROC, the precision-recall curve is less sensitive to true
negative (TN) cases in the evaluation model. Given, that individual
patients have between 100–150 SEEG contacts implanted, and the
EZ is often not bigger than 5 contacts, all correctly classified non-EZ
contacts might produce significant imbalance to metrics like speci-
ficity, which is the basis of ROC calculation. This imbalance would
artificially increase the score of the model. On the other hand, pre-
cision and recall ignore TNs by their definition (Precision = TP/TP +
FP; Recall = TP/TP + FN). In our case TP (true positive) is the cor-
rectly classified EZ, FP (false positive) is the incorrectly classified
non-EZ, and FN (false negative) in the incorrectly classified EZ.
PRAUC is, however, not completely independent on the TN ratio.
It is important to relate results to the PRAUC baseline, which is
the ratio of EZ contacts in the dataset (in our case 0.062). If, for
8

example, this ratio is 50%, the result of PRAUC = 0.5 is basically a
coin toss (similar to ROCAUC = 0.5).
4.6. Strengths and potential limitations

The main strength of the presented approach is its high poten-
tial to achieve a reduction in recording time. Every long recording
is a risk for a patient. Reducing the recording time to only a few
dozen minutes might be highly beneficial and significantly
improve patient comfort and well-being, as well as lower the risks
and costs. In this paper, we analyzed 25 patients with Engels I post-
surgical outcomes gathered from 2 tertiary epilepsy centers. This
sample size does unfortunately not allow to assess differences
across pathologies regarding the type of segments with best per-
formance. Furthermore, the data processed in this study are from
1-3 days and hence cannot assess if changes in medication might
have contributed to changes in performance. This awaits clarifica-
tion in complete SEEG investigations. Overall usefulness of these
models has to be demonstrated not only for successful surgeries
but also for patients with poor surgical outcomes, as done in other
studies (for example Klimes et al. 2019). The scope of this study
was to evaluate how the performance of these models vary over
different states of vigilance and to do so we needed a correctly con-
firmed location of the EZ region, which is only possible in patients
with a good postsurgical outcome.
5. Conclusions

Our study shows that models based on variability and average
of iEEG features derived from � 24-hour recordings achieve better
scores than models based on short segments. However, this was
not true in 25% of all short segments that we analyzed. This work
was able to show that well selected 5-minute long segments,
preferably from NREM N2 or N3 sleep, can achieve reliable results.
Clinicians should hence be aware that timing matters when relying
on short segments.
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Atlas of the normal intracranial electroencephalogram: neurophysiological
awake activity in different cortical areas. Brain 2018;141:1130–44. https://doi.
org/10.1093/brain/awy035.

Gliske SV, Irwin ZT, Chestek C, Hegeman GL, Brinkmann B, Sagher O, et al.
Variability in the location of high frequency oscillations during prolonged
intracranial EEG recordings. Nat Commun 2018;9:2155. https://doi.org/
10.1038/s41467-018-04549-2.

Hanley JA, Mcneil B. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology 1982;143:29–36. https://doi.org/10.1148/
radiology.143.1.7063747.

Ives JR. New chronic EEG electrode for critical/intensive care unit monitoring. J Clin
Neurophysiol 2005;22:119–23. https://doi.org/10.1097/01.WNP.0000152659.
30753.47.

Jacobs J, Wu JY, Perucca P, Zelmann R, Mader M, Dubeau F, et al. Removing
high-frequency oscillations: A prospective multicenter study on seizure
outcome. Neurology 2018;91:e1040–52. https://doi.org/10.1212/WNL.
0000000000006158.
9

Janca R, Jezdik P, Cmejla R, Tomasek M, Worrell GA, Stead M, et al. Detection of
interictal epileptiform discharges using signal envelope distribution modelling:
application to epileptic and non-epileptic intracranial recordings. Brain Topogr
2015;28:172–83. https://doi.org/10.1007/s10548-014-0379-1.

Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a
review. JAMA 2015;313:285–93. https://doi.org/10.1001/jama.2014.17426.

Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, et al. Cycles in
epilepsy. Nat Rev Neurol 2021;17:267–84. https://doi.org/10.1038/s41582-
021-00464-1.

Klimes P, Cimbalnik J, Brazdil M, Hall J, Dubeau F, Gotman J, et al. NREM sleep is the
state of vigilance that best identifies the epileptogenic zone in the interictal
electroencephalogram. Epilepsia 2019;60:2404–15. https://doi.org/10.1111/
epi.16377.

Klimes P, Duque JJ, Brinkmann B, Van Gompel J, Stead M, St Louis EK, et al. The
functional organization of human epileptic hippocampus. J Neurophysiol
2016;115:3140–5. https://doi.org/10.1152/jn.00089.2016.

Klimes P, Peter-Derex L, Hall J, Dubeau F, Frauscher B. Spatio-temporal spike
dynamics predict surgical outcome in adult focal epilepsy. Clin Neurophysiol
2022;134:88–99. https://doi.org/10.1016/j.clinph.2021.10.023.

Krucoff MO, Chan AY, Harward SC, Rahimpour S, Rolston JD, Muh C, et al. Rates and
predictors of success and failure in repeat epilepsy surgery: A meta-analysis
and systematic review. Epilepsia 2017;58:2133–42. https://doi.org/10.1111/
epi.13920.

Lagarde S, Roehri N, Lambert I, Trebuchon A, McGonigal A, Carron R, et al. Interictal
stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain
2018;141:2966–80. https://doi.org/10.1093/brain/awy214.

Li Y-H, Ye X-L, Liu Q-Q, Mao J-W, Liang P-J, Xu J-W, et al. Localization of
epileptogenic zone based on graph analysis of stereo-EEG. Epilepsy Res
2016;128:149–57. https://doi.org/10.1016/j.eplepsyres.2016.10.021.

van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, et al.
Functional brain connectivity from EEG in epilepsy: seizure prediction and
epileptogenic focus localization. Prog Neurobiol 2014;121:19–35. https://doi.
org/10.1016/j.pneurobio.2014.06.004.

Murphy PM, von Paternos AJ, Santaniello S. A novel HFO-based method for
unsupervised localization of the seizure onset zone in drug-resistant epilepsy.
In: 2017 39th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). p. 1054–7. https://doi.org/10.1109/
EMBC.2017.8037008.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-
learn: Machine Learning in Python. J Mach Learn Res 2011;12:2825–30.

Powers D, Ailab.. Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness & correlation. J Mach Learn Technol
2011;2:2229–3981. https://doi.org/10.9735/2229-3981.

Ren L, Kucewicz MT, Cimbalnik J, Matsumoto JY, Brinkmann BH, Hu W, et al.
Gamma oscillations precede interictal epileptiform spikes in the seizure onset
zone. Neurology 2015;84:602–8. https://doi.org/10.1212/
WNL.0000000000001234.

Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC
plot when evaluating binary classifiers on imbalanced datasets. PLoS One
2015;10:e0118432.

Sammaritano M, Gigli GL, Gotman J. Interictal spiking during wakefulness and sleep
and the localization of foci in temporal lobe epilepsy. Neurology 1991;41:290.
https://doi.org/10.1212/WNL.41.2_Part_1.290.

Sarnthein J, Jacobs J, Zijlmans M. Editorial: High-frequency oscillations in the
hippocampus as biomarkers of pathology and healthy brain function. Front
Hum Neurosci 2021;15.

Spanedda F, Cendes F, Gotman J. Relations between EEG seizure morphology,
interhemispheric spread, and mesial temporal atrophy in bitemporal epilepsy.
Epilepsia 1997;38:1300–14. https://doi.org/10.1111/j.1528-1157.1997.
tb00068.x.

Spencer DC, Sun FT, Brown SN, Jobst BC, Fountain NB, Wong VSS, et al. Circadian and
ultradian patterns of epileptiform discharges differ by seizure-onset location
during long-term ambulatory intracranial monitoring. Epilepsia
2016;57:1495–502. https://doi.org/10.1111/epi.13455.

Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel Jr J. High-frequency oscillations
recorded in human medial temporal lobe during sleep. Ann Neurol
2004;56:108–15. https://doi.org/10.1002/ana.20164.

Thomas J, Kahane P, Abdallah C, Avigdor T, Zweiphenning WJEM, Chabardes S, et al.
A subpopulation of spikes predicts successful epilepsy surgery outcome. Ann
Neurol 2022. https://doi.org/10.1002/ana.26548.

Thomschewski A, Hincapié A-S, Frauscher B. Localization of the epileptogenic zone
using high frequency oscillations. Front Neurol 2019;10.

Travnicek V, Klimes P, Cimbalnik J, Halamek J, Jurak P, Brinkmann B, et al. Relative
entropy is an easy-to-use invasive electroencephalographic biomarker of the
epileptogenic zone. Epilepsia 2023.

Weiss SA, Lemesiou A, Connors R, Banks GP, McKhann GM, Goodman RR, et al.
Seizure localization using ictal phase-locked high gamma: A retrospective
surgical outcome study. Neurology 2015;84:2320–8. https://doi.org/10.1212/
WNL.0000000000001656.

https://doi.org/10.1016/j.clinph.2024.01.007
https://doi.org/10.1212/WNL.0000000000200337
https://doi.org/10.1212/WNL.0000000000200337
https://doi.org/10.1111/j.1528-1167.2008.01784.x
https://doi.org/10.1111/j.1528-1167.2008.01784.x
https://doi.org/10.1038/s41467-017-02577-y
https://doi.org/10.1111/j.1749-6632.1964.tb48206.x
https://doi.org/10.5664/jcsm.6576
https://doi.org/10.1212/WNL.0000000000011408
https://doi.org/10.1212/WNL.0000000000011408
https://doi.org/10.5281/zenodo.7906344
https://doi.org/10.1016/j.clinph.2019.07.024
https://doi.org/10.5281/zenodo.4030570
https://doi.org/10.5281/zenodo.4030570
https://doi.org/10.1093/brain/awm146
https://doi.org/10.1111/epi.17482
https://doi.org/10.1093/brain/awz386
https://doi.org/10.1016/j.clinph.2011.07.050
https://doi.org/10.1016/j.nicl.2017.02.018
https://doi.org/10.1111/epi.13380
https://doi.org/10.1111/epi.13380
https://doi.org/10.1212/WNL.43.8.1612
https://doi.org/10.1111/epi.13829
https://doi.org/10.1093/brain/awy035
https://doi.org/10.1093/brain/awy035
https://doi.org/10.1038/s41467-018-04549-2
https://doi.org/10.1038/s41467-018-04549-2
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1097/01.WNP.0000152659.30753.47
https://doi.org/10.1097/01.WNP.0000152659.30753.47
https://doi.org/10.1212/WNL.0000000000006158
https://doi.org/10.1212/WNL.0000000000006158
https://doi.org/10.1007/s10548-014-0379-1
https://doi.org/10.1001/jama.2014.17426
https://doi.org/10.1038/s41582-021-00464-1
https://doi.org/10.1038/s41582-021-00464-1
https://doi.org/10.1111/epi.16377
https://doi.org/10.1111/epi.16377
https://doi.org/10.1152/jn.00089.2016
https://doi.org/10.1016/j.clinph.2021.10.023
https://doi.org/10.1111/epi.13920
https://doi.org/10.1111/epi.13920
https://doi.org/10.1093/brain/awy214
https://doi.org/10.1016/j.eplepsyres.2016.10.021
https://doi.org/10.1016/j.pneurobio.2014.06.004
https://doi.org/10.1016/j.pneurobio.2014.06.004
https://doi.org/10.1109/EMBC.2017.8037008
https://doi.org/10.1109/EMBC.2017.8037008
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0170
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0170
https://doi.org/10.9735/2229-3981
https://doi.org/10.1212/WNL.0000000000001234
https://doi.org/10.1212/WNL.0000000000001234
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0185
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0185
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0185
https://doi.org/10.1212/WNL.41.2_Part_1.290
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0195
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0195
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0195
https://doi.org/10.1111/j.1528-1157.1997.tb00068.x
https://doi.org/10.1111/j.1528-1157.1997.tb00068.x
https://doi.org/10.1111/epi.13455
https://doi.org/10.1002/ana.20164
https://doi.org/10.1002/ana.26548
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0220
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0220
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0225
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0225
http://refhub.elsevier.com/S1388-2457(24)00031-2/h0225
https://doi.org/10.1212/WNL.0000000000001656
https://doi.org/10.1212/WNL.0000000000001656

	Timing matters for accurate identification of the epileptogenic zone
	Introduction
	Methods
	Patients
	Recordings
	Data selection and pre-processing
	Segment selection
	Calculation of minimum and maximum IED rate segments
	Calculation of minimum entropy segments
	Feature calculation
	Feature selection
	Training and validation of the models
	Statistical analysis of the results

	Results
	Patient demographic characteristics
	Selected segments
	Comparison of the models based on individual segments
	Comparison of the models based on data from all segments
	Comparison of single segment model and AVG_VAR model

	Discussion
	Short recordings vary in their ability to identify the EZ
	Well selected short recordings have a similar value to identify the EZ as long recordings
	Times of selected segments
	Considering the variance of EEG features is useful in long recordings
	Selection of the PRAUC and not standard AUC
	Strengths and potential limitations

	Conclusions
	Conflict of interest
	Acknowledgments
	Author contributions
	Supplementary data
	References


