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A B S T R A C T

Erbium-165 is pure Auger electron emitter and promising candidate for targeted radionuclide therapy. Investi
gation of its production routes is therefore highly desirable. Only a few cross-section measurements of its pro
duction via the 165Ho(p,n) nuclear reaction are available, and the data are not entirely consistent.

In this work, we present new cross-section measurements of the 165Ho(p,n)165Er reaction and the 165Ho(p, 
x)164m,gHo side reactions covering the proton energy range up to 20 MeV. The obtained data are compared to 
previously published data as well as to the prediction of the nuclear reaction model code TALYS 1.96. Thick 
target yields deduced from the measured cross sections confirm feasibility of 165Er production in clinically 
relevant amounts and high radionuclidic purity. The investigated production route is particularly suitable for 
implementation on common small cyclotrons and deserves further development.

1. Introduction

Erbium-165 (T½ = 10.36 h, EC = 100 %) is the next rare-earth 
element (REE) with promise in medicine. It undergoes electron cap
ture, which is followed by the emission of Auger electrons with energies 
of 5.33 and 38.4 keV, in addition to several low-energy X-rays with 
energies ranging from 6.72 to 55.30 keV. These decay properties make 
165Er a suitable candidate for single-photon emission computed to
mography (SPECT), but mainly for targeted radionuclide therapy 
(TRNT).

Erbium-165 is not the first REE attractive for TRNT. The most widely 
used REEs in TRNT are, naturally, those with proper decay character
istics and production routes that yield sufficient activities for clinical 
applications, such as 90Y, 153Sm or 177Lu with the emission of β particles 
(Parus and Mikolajczak, 2012; Civelek and Wong, 2021; Song and 
Sgouros, 2024). However, even among the Auger electron emitters, 
165Er is not the first REE investigated for use in TRNT. 161Tb has been 
recently investigated in detail due to its potential to outperform 177Lu 
(Lehenberger et al., 2011; Alcocer-Ávila et al., 2020).

Radionuclides emitting β particles have been shown to be effective in 
the treatment of large and solid tumours, such as neuroendocrine or 
prostate cancer, due to the range and suitable linear energy transfer 
(LET) of the emitted β particles (Strosberg et al., 2017). In contrast, 
Auger emitters may find their application in the therapy of small or 

micrometastatic tumours due to the short-range high LET electrons they 
emit (Aghevlian et al., 2017).

There are several routes of production of 165Er via charged-particle 
induced reactions. The most favourable seems to be the direct route to 
165Er by bombardment of Ho targets with protons or deuterons due to 
the fact that holmium is naturally monoisotopic element: 

165Ho(p,n)165Er                                                                              (1)

165Ho(d,2n)165Er                                                                            (2)

Reaction 1 seems to be the most promising because the proton en
ergies needed for maximal yield fall into the range of widespread small 
cyclotrons (Ep ≤ 18 MeV). The maximal cross section for Reaction 1 was 
determined experimentally (166–180 mb) for proton energies of 
9.5–11.3 MeV (Gracheva et al., 2020; Tárkányi et al., 2008a; Beyer et al., 
2004). Reaction 2 was also investigated and its maximum was found 
near 600 mb for deuteron energies 12.4–13.6 MeV (Tárkányi et al., 
2008b; Hermanne et al., 2013). Predictions based on the nuclear reac
tion model code TALYS-1.2 for Reaction 2 were even higher, 754 mb at 
13 MeV (Sadeghi, 2010).

The indirect route via the short-lived 165Tm (T½ = 1.25 d, EC = 100 
%) through activation of two erbium stable isotopes (164Er and 166Er) is 
another option: 

166Er(p,2n)165Tm→165Er                                                                 (3)
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166Er(d,3n)165Tm→165Er                                                                 (4)

164Er(d,n)165Tm→165Er                                                                  (5)

The predicted maxima of Reactions 3 and 4 are large, 1260 mb and 
1525 mb at 21 MeV and 25 MeV, respectively. In contrast, Reaction 5 
does not seem to be of interest for production of 165Er, because the 
predicted shape and maximum of the excitation function indicates a 
small yield. It however contributes to the formation of 165Er in deuteron 
irradiation of natEr targets (Sadeghi, 2010).

We therefore decided to investigate excitation functions of proton- 
induced reactions on 165Ho and to compare them with the previous 
measurements and current prediction of TALYS 1.96 (Koning et al., 
2023). Cross-sections of the 165Ho(p,n)165Er reaction were re-measured 
together with the simultaneously running reaction 165Ho(p,x)164m,gHo. 
Thick target yields deduced from the obtained data allowed us to esti
mate the potential of this 165Er production route.

2. Materials and methods

2.1. Target and irradiation

One stack of foils containing 12 Ho targets (99.9 %, 8.84–11.25 μm 
thick, GoodGellow), 12 Ti monitors (99.6 %, 11.43 μm thick, AlfaAesar), 
several Cu degraders (55.9 and/or 10.6 μm thick, GoodFellow), and a Ag 
beam stop was irradiated on the external proton beam line of the 
cyclotron U-120M at the Nuclear Physics Institute of the CAS. The pre
cise thicknesses of the foils and their uncertainties were calculated after 
weighing the foils prior to the irradiation. The stack was placed in a 
Faraday-cup-like holder. The beam energy loss and straggling were 
calculated with SRIM2008 (Ziegler et al., 2008). The incident proton 
energy determined from the measurement of the beam orbit position 
was 19.95 ± 0.20 MeV. Beam current was recorded each second of the 
irradiation and integrated over the bombardment time, tb. The beam 
parameters were confirmed by re-measurement of the beam monitoring 
reaction natTi(p,x)48V excitation function and its comparison with rec
ommended data (Červenák and Lebeda, 2020; Hermanne et al., 2018).

2.2. Activity measurement and cross-section calculation

After the end of bombardment (EOB), single foils were measured on 
three energy- and efficiency-calibrated γ-ray spectrometers equipped 
with HPGe detectors: two coaxial GEM40P4-83-SMP (Ortec) and 
GC4018 (Canberra), as well as one planar GL0515R (Canberra). The 
calibration was performed using a set of standards (241Am, 152Eu, 133Ba) 
provided by the Czech Institute of Metrology with combined standard 
uncertainties varying from 0.4 % to 1.0 %. Detection efficiency curves 
were measured for each sample-to-detector distance.

Gamma-ray spectra were evaluated manually using the standard 
Canberra program GENIE2K with interactive peak fitting utility. Net 
peak areas of the γ lines used for quantification of a given radionuclide 

were corrected for their mean attenuation in the foils as well as for the 
attenuation in the polyethylene bag in which they were measured.

The decay data used for the activity calculation were adopted from 
the NuDat3 database (NuDat 3.0, NNDC), originally published in Nu
clear Data Sheets (Singh and Chen, 2018, 2024). Q-values and thresh
olds of the reactions were calculated via Q-calc program online 
(Pritychenko and Sonzogni, NNDC). The decay and nuclear reaction 
data relevant for the experiment are summarized in Table 1.

Cross-sections were calculated using the activation formula (equa
tion (6)): 

σ =
Pγ

Iγηtm
λtr

1 − e− λtr
eλtc Aze

dρNAI(1 − e− λtb )
, (6) 

where σ is cross-section for formation of the radionuclide at the energy 
in the middle of the foil (cm2), Pγ is net peak area of the γ line used for 
the quantification of radionuclide, Iγ is intensity of this γ line, η is 
detection efficiency for this γ line, tm is live time of the measurement (s), 
tr is real time of measurement (including the dead time) (s), tc is time 
between the EOB and the start of the measurement (s), A is atomic 
weight of the foil’s metal (g/mol), z is proton charge (z = 1), e is 
elementary charge (1.602177 × 10− 19 C), d is foil’s thickness (cm), ρ is 
density of the foil’s metal (g/cm3), NA is Avogadro’s number (6.022137 
× 1023 mol− 1), I is beam current (A), λ is decay constant of the radio
nuclide (s− 1), and tb is irradiation time (s).

Total cross-section uncertainty was deduced from partial un
certainties of the parameters in the activation formula summarized 
below: 

• detection efficiency for a γ line selected for activity calculation (<3 
%)

• emission probability of a γ line selected for activity calculation 
(usually <5 %)

• net peak area of a γ line selected for activity calculation (<10 %)
• beam current (5 %)
• thickness of the foil (<2 %)

After the evaluation of cross-sections, the excitation functions were 
compared with previously published experimental data and with theo
retical predictions of the TALYS 1.96 nuclear reaction model code 
(Koning et al., 2023).

3. Results and discussion

3.1. Beam energy and current

The proton current recorded by the beam integrator was 0.932 μA. 
The remeasured excitation function of the beam monitoring reaction 
using the incident beam energy and the beam current is displayed in 
Fig. 1. The measured cross sections agree very well with the recom
mended data (Červenák and Lebeda, 2020; Hermanne et al., 2018).

Table 1 
Decay data of the investigated radionuclides and nuclear reactions, in which they are formed. Q-values for isomeric nuclei need to be lowered by the energy level of the 
isomer. Q-values and threshold energies for reactions in which composed particles are emitted are to be increased by binding energy of the particle (d = pn + 2.225 
MeV). Energies and intensities of γ lines used for quantification are in bold, uncertainties are in italics.

RN T½ Eγ (keV) Iγ (%) reaction Q (MeV) Ethr (MeV)
165Er 10.36 h 4 46.7 21.5 5 165Ho(p,n)165Er − 1.1590 12 1.1661 12

47.547 37.9 8
53.695a 3.99 8
53.877a 7.73 16
55.293 2.59 6

164gHo 28.8 min 4 91.39 3 2.3 165Ho(p,pn)164Ho − 7.9888 16 8.0376 16
73.392 5 1.88

164mHo 36.6 min 3 56.64 5 6.5 3

a Sum of these two unresolved peaks and their intensities was used for calculations.
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3.2. Cross sections

The cross sections measured in this work are summarized in Table 2. 
They are also shown in Figs. 2–4 together with the previously published 
experimental data and with the prediction of the TALYS 1.96 nuclear 
reaction model code using its default parameters (Koning et al., 2023).

3.2.1. Cross-sections for 165Ho(p,n)165Er reactions
The activity of 165Er has been calculated after complete decay of 

163Er using its X-rays with energies 46.70 keV, 47.55 keV, and 53.79 keV 
with respective intensities of 21.5 %, 37.9 % and 11.72 % (the latter 
being the sum of 53.70 keV and 53.88 keV X-rays with intensities of 
3.99 % and 7.73 % respectively). Activities and cross sections calculated 
using different X-rays provided consistent results. We used the sum of 
53.70 and 53.88 keV X-rays for calculation the cross sections presented 
in Table 2 and in Fig. 2. Our data are in a good agreement with the data 
of Gracheva et al. (2020) and Tárkányi et al. (2008a) even though the 
peak of our excitation function seems to be narrower, sharper and its 
amplitude slightly lower. The data of Beyer et al. (2004) seem to be 
systematically shifted towards higher energies by 1.5–2 MeV, but cor
responds well in shape and amplitude with other experimental data. 
Recommended cross sections obtained as PADÉ fit of the experimental 
data in Tárkányi et al. (2024) agree within uncertainties with our 
measurement, which indicates slightly lower values for Ep > 9 MeV.

The TALYS 1.96 prediction reproduces well the shape of the exper
imental data, but the excitation function maximum is shifted to lower 
energies by ca. 1.5 MeV, and the cross sections seem to be 

underestimated in the energy interval of 8.5–14 MeV.

3.2.2. Cross-sections for 165Ho(p,x)164m,gHo reactions
The isomers 164m,gHo can be produced solely in the reactions 165Ho 

(p,pn) and 165Ho(p,d). They have comparable half-lives, and the ground 
state is continuously fed by isomeric transition of 164mHo. The activity of 
164mHo was calculated using its 56.64 keV γ line with intensity of 6.5 % 

Fig. 1. Re-measurement of the monitoring reaction natTi(p,x)48V.

Table 2 
Measured isotopic cross sections for the formation of 165Er, 164mHo and 164gHo in 
proton-induced nuclear reactions on 165Ho. The cross sections for direct for
mation of 164gHo were deduced after subtraction of the 165mHo decay contri
bution to the 164gHo activity, if possible.

Ep (MeV) σ (mb)
165Er 164mHo 164gHo

19.80 ± 0.20 31.2 ± 2.0 33.0 ± 2.3 ​
18.73 ± 0.21 32.3 ± 2.1 23.2 ± 1.6 ​
17.61 ± 0.22 33.9 ± 2.2 13.9 ± 1.0 9.2 ± 1.8
16.46 ± 0.23 36.5 ± 2.4 8.71 ± 0.60 5.9 ± 1.0
15.25 ± 0.24 42.3 ± 2.7 4.38 ± 0.31 3.21 ± 0.53
13.99 ± 0.26 54.2 ± 3.5 1.86 ± 0.14 0.62 ± 0.24
12.65 ± 0.27 81.1 ± 5.2 0.499 ± 0.054 ​
11.22 ± 0.31 122 ± 7.9 ​ ​
9.63 ± 0.35 149 ± 9.7 ​ ​
7.82 ± 0.39 81.5 ± 5.3 ​ ​
5.66 ± 0.49 8.67 ± 0.57 ​ ​
3.87 ± 0.69 0.537 ± 0.036 ​ ​

Fig. 2. Cross sections of the 165Ho(p,n)165Er reaction in comparison with pre
viously measured data and their PADÉ fit (recommended cross sections avail
able at www-nds.iaea.org/medical), as well as with the prediction of the 
nuclear reaction model code TALYS 1.96 (default parameters).

Fig. 3. Cross sections of the 165Ho(p,x)164mHo reaction in comparison with 
prediction of the nuclear reaction model code TALYS 1.96 (default parameters).

Fig. 4. Cross sections of the 165Ho(p,x)164gHo reaction in comparison with 
prediction of the nuclear reaction model code TALYS 1.96 (default parameters).
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and the activity of 164gHo was calculated using its 91.39 keV γ line with 
intensity of 2.3 %. The activity of the ground state was corrected for the 
contribution of the activity born from 164mHo during and after irradia
tion. For detailed description of the correction, we refer to our previous 
work (Lebeda and Pruszyński, 2010). Due to the short half-lives of both 
isomers and delay in the subsequent foils’ measurement, not all the 
spectra could be used for deducing independent cross sections for the 
164gHo formation. The results are displayed in Figs. 3 and 4. It is the first 
measurement of the cross sections for the 165Ho(p,x)164m,gHo reactions. 
We may, therefore, compare our data only to the theoretical prediction 
of TALYS 1.96. It reproduces well the trend of our measurement, but it 
markedly underestimates the absolute values—around 20 MeV, our 
cross sections are ca. four times larger than the predictions for 164mHo 
and ca. twice lower for 164gHo.

3.3. Thick target yields

The thick target yield for production of 165Er was calculated from the 
measured cross sections fitted with two polynomials by integrating them 
with use of the proton stopping power in holmium. The result is dis
played in Fig. 5 together with the only available measured thick target 
yield point measured by Gracheva et al. (2020). This point agrees with 
the curve deduced from the cross sections measured in this work within 
the uncertainties, which are relatively large in this particular case.

Production of 165Er with high radionuclidic purity is readily 
achievable via the 165Ho(p,n) reaction, because there is no other 
radioisotope of erbium produced in the target in the beam energy range 
of 5–15 MeV. The only other radionuclides produced in the target in this 
energy interval are the isomers 164m,gHo, whose amount in the target 
will be relatively small. They also decay much faster than 165Er and will 
likely be chemically separated from the product together with the target 
matrix.

For potential production of 165Er, the proton energy loss 15 → 5 MeV 
seems to be optimal. The target thickness necessary for such beam en
ergy loss deduced from proton stopping powers in holmium obtained 
from SRIM2008 is 0.58 mm (Ziegler et al., 2008). The EOB activities for 
increasing bombardment time, our suggested beam energy loss, and the 
fixed beam current of 50 μA are summarized in Table 3.

Five-hour long bombardment forms 138 GBq of 165Er at EOB, and 
doubling the irradiation time increases the EOB activity to 236 GBq. 
Even taking into account decay during a complex separation process, 
which may take up to 5 h as described in (Bolcaen et al., 2023; Da Silva 
et al., 2021), it is a more than acceptable production yield from many 
viewpoints such as target and beam price.

As no Auger electron emitters have yet been approved for clinical 
practice, it isn’t straightforward to estimate the single patient dose. The 
most advanced investigated Auger electron emitter similar to 165Er is 
perhaps 161Tb (T½ = 6.96 d; β− = 100 %). This radionuclide has similar 
chemical properties and average number of Auger electrons emitted per 
decay (10.9 for 161Tb and 7.2 for 165Er), however, it emits also β elec
trons (Verburg et al., 2023). Some preliminary studies showed that in 
case of 161Tb, the applied therapeutic activities could be lower compared 
to clinically established β− emitter 177Lu, when targeting similar tissues 
such as neuroendocrine tumours or prostate cancer due to higher ther
apeutic efficiency of Auger electrons emitted (Verburg et al., 2023; 
Baum et al., 2021; Müller et al., 2023). Some studies suggest activities of 
up to 5.4 GBq of 161Tb per therapy cycle (Verburg et al., 2023), which 
could potentially apply for 165Er as well. This activity is readily 
achievable via the 165Ho(p,n)165Er route investigated here. Taken 
together with other aspects discussed above, the studied production 
route of 165Er via 165Ho(p,n)165Er reaction feasibly enables further 
exploration of this promising radionuclide in nuclear medicine.

4. Conclusion

In this work, we present newly measured data for excitation 

functions of reactions relevant to the production of 165Er, 164mHo, and 
164gHo. The latter two reactions’ functions are reported for the first time.

In discussion of thick target yields, we demonstrate that the reaction 
165Ho(p,n)165Er is applicable to 165Er production scale estimated for 
early human studies (based on the assumption of similar activities to 
161Tb-labeled therapeutic drugs) with high radionuclidic purity.
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zation. Lukáš Ondrák: Writing – review & editing, Writing – original 
draft, Investigation, Formal analysis, Data curation, Conceptualization. 
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